論文の概要: The $f$-divergence and Loss Functions in ROC Curve
- arxiv url: http://arxiv.org/abs/2110.09651v1
- Date: Mon, 18 Oct 2021 23:12:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-21 02:01:28.239932
- Title: The $f$-divergence and Loss Functions in ROC Curve
- Title(参考訳): ROC曲線における$f$-divergenceとロス関数
- Authors: Song Liu
- Abstract要約: 2つのデータ分布とテストスコア関数が与えられたとき、受信者動作特性(ROC)曲線は、そのようなスコアがいかに2つの分布を分離するかを示す。
ROC曲線は2つの分布の相違の尺度として使用できるか?
本稿では, テストスコアとしてデータ確率比を用いると, ROC曲線の弧長が2つのデータ分布の差を測る新しい$f$-divergenceを生じることを示す。
- 参考スコア(独自算出の注目度): 2.9823962001574182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given two data distributions and a test score function, the Receiver
Operating Characteristic (ROC) curve shows how well such a score separates two
distributions. However, can the ROC curve be used as a measure of discrepancy
between two distributions? This paper shows that when the data likelihood ratio
is used as the test score, the arc length of the ROC curve gives rise to a
novel $f$-divergence measuring the differences between two data distributions.
Approximating this arc length using a variational objective and empirical
samples leads to empirical risk minimization with previously unknown loss
functions. We provide a Lagrangian dual objective and introduce kernel models
into the estimation problem. We study the non-parametric convergence rate of
this estimator and show under mild smoothness conditions of the real arctangent
density ratio function, the rate of convergence is $O_p(n^{-\beta/4})$ ($\beta
\in (0,1]$ depends on the smoothness).
- Abstract(参考訳): 2つのデータ分布とテストスコア関数が与えられたとき、受信者動作特性(ROC)曲線は、そのようなスコアがいかに2つの分布を分離するかを示す。
しかし、ROC曲線は2つの分布の相違の尺度として使用できるか?
本稿では, テストスコアとしてデータ確率比を用いると, ROC曲線の弧長が2つのデータ分布の差を測る新しい$f$-divergenceを生じることを示す。
この弧長を変動目的と経験的サンプルを用いて近似すると、以前は未知の損失関数を持つ経験的リスク最小化につながる。
我々は,ラグランジュ双対目標を提案し,推定問題にカーネルモデルを導入する。
本研究では, この推定器の非パラメトリック収束率について検討し, 実アークタンジェント密度比関数の穏やかな平滑性条件下では, 収束率は$o_p(n^{-\beta/4})$ (\beta \in (0,1]$) であることを示した。
関連論文リスト
- Straightness of Rectified Flow: A Theoretical Insight into Wasserstein Convergence [54.580605276017096]
拡散モデルは画像生成とデノナイズのための強力なツールとして登場した。
最近、Liuらは新しい代替生成モデル Rectified Flow (RF) を設計した。
RFは,一連の凸最適化問題を用いて,ノイズからデータへの直流軌跡の学習を目的としている。
論文 参考訳(メタデータ) (2024-10-19T02:36:11Z) - Gaussian-Smoothed Sliced Probability Divergences [15.123608776470077]
滑らか化とスライシングが計量特性と弱位相を保存することを示す。
また、滑らかなパラメータに関して異なる発散の連続性を含む他の性質も導出する。
論文 参考訳(メタデータ) (2024-04-04T07:55:46Z) - Byzantine-resilient Federated Learning With Adaptivity to Data Heterogeneity [54.145730036889496]
本稿では、ビザンツの悪意ある攻撃データの存在下でのグラディエント・ラーニング(FL)を扱う。
Average Algorithm (RAGA) が提案され、ロバストネスアグリゲーションを活用してデータセットを選択することができる。
論文 参考訳(メタデータ) (2024-03-20T08:15:08Z) - Computing Marginal and Conditional Divergences between Decomposable
Models with Applications [7.89568731669979]
本稿では,2つの分解可能なモデルの任意の限界分布と条件分布の正確なα-ベータの偏差を計算する手法を提案する。
提案手法を用いて,まずベンチマーク画像データセットに適用することにより,分布変化を解析する方法を示す。
本稿では,現代の超伝導量子コンピュータにおける誤差の定量化手法を提案する。
論文 参考訳(メタデータ) (2023-10-13T14:17:25Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
データ次元において線形である第1収束境界を提供する。
拡散モデルは任意の分布を近似するために少なくとも$tilde O(fracd log2(1/delta)varepsilon2)$ stepsを必要とすることを示す。
論文 参考訳(メタデータ) (2023-08-07T16:01:14Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Neural Inference of Gaussian Processes for Time Series Data of Quasars [72.79083473275742]
クエーサースペクトルを完全に記述できる新しいモデルを提案する。
また、$textitNeural Inference$というガウス的プロセスパラメータの推論の新しいメソッドも導入しています。
CDRWモデルとNeural Inferenceの組み合わせはベースラインのDRWとMLEを大きく上回っている。
論文 参考訳(メタデータ) (2022-11-17T13:01:26Z) - Improved Analysis of Score-based Generative Modeling: User-Friendly
Bounds under Minimal Smoothness Assumptions [9.953088581242845]
2次モーメントを持つ任意のデータ分布に対して,コンバージェンス保証と複雑性を提供する。
我々の結果は、対数共空性や機能的不等式を前提としない。
我々の理論解析は、異なる離散近似の比較を提供し、実際の離散化点の選択を導くかもしれない。
論文 参考訳(メタデータ) (2022-11-03T15:51:00Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
本稿では、データサンプルの数が$n$である現実的な環境で、ランダムフーリエ(RFF)回帰の正確さを特徴付けます。
この分析はまた、大きな$n,p,N$のトレーニングとテスト回帰エラーの正確な推定も提供する。
論文 参考訳(メタデータ) (2020-06-09T02:05:40Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。