論文の概要: Latent reweighting, an almost free improvement for GANs
- arxiv url: http://arxiv.org/abs/2110.09803v1
- Date: Tue, 19 Oct 2021 08:33:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-20 14:00:02.482921
- Title: Latent reweighting, an almost free improvement for GANs
- Title(参考訳): GANのほぼ自由な改善である潜時再重み付け
- Authors: Thibaut Issenhuth, Ugo Tanielian, David Picard, Jeremie Mary
- Abstract要約: 一連の作業は、計算コストの増大を犠牲にして、事前訓練された発電機からのサンプリング品質を改善することを目的としている。
遅延重みを予測するための追加ネットワークと、最も貧しいサンプルを避けるための2つの関連するサンプリング手法を導入する。
- 参考スコア(独自算出の注目度): 12.605607949417033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard formulations of GANs, where a continuous function deforms a
connected latent space, have been shown to be misspecified when fitting
different classes of images. In particular, the generator will necessarily
sample some low-quality images in between the classes. Rather than modifying
the architecture, a line of works aims at improving the sampling quality from
pre-trained generators at the expense of increased computational cost. Building
on this, we introduce an additional network to predict latent importance
weights and two associated sampling methods to avoid the poorest samples. This
idea has several advantages: 1) it provides a way to inject disconnectedness
into any GAN architecture, 2) since the rejection happens in the latent space,
it avoids going through both the generator and the discriminator, saving
computation time, 3) this importance weights formulation provides a principled
way to reduce the Wasserstein's distance to the target distribution. We
demonstrate the effectiveness of our method on several datasets, both synthetic
and high-dimensional.
- Abstract(参考訳): 連続関数が連結潜在空間を変形するGANの標準定式化は、画像の異なるクラスに適合するときに誤特定されることが示されている。
特に、ジェネレータはクラス間の低品質なイメージを必ずサンプリングします。
アーキテクチャを変更するのではなく、計算コストの増大を犠牲にして、事前訓練された発電機からのサンプリング品質を改善することを目的としている。
そこで本研究では, 潜在重要度を予測するネットワークと, 最も貧弱なサンプルを避けるための2つのサンプリング手法を提案する。
このアイデアにはいくつかの利点があります
1)任意のGANアーキテクチャに接続不能を注入する方法を提供する。
2) 遅延空間で拒絶が発生するため, 発生器と判別器の両方を通さず, 計算時間を節約できる。
3) この重要性重み付けの定式化は、ワッサースタインの距離を目標分布に還元する原理的な方法を提供する。
本研究では,合成データと高次元データの両方において,提案手法の有効性を示す。
関連論文リスト
- Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
自然画像の生成的サンプリングにおける顕著な成果の上に構築する。
我々は、画像に似たサンプルを生成するという、画期的な挑戦を、潜在的に過度に野心的に提案する。
統計上の課題は、小さなサンプルサイズであり、時には数百人の被験者で構成されている。
論文 参考訳(メタデータ) (2024-04-10T22:35:06Z) - Adversarial Likelihood Estimation With One-Way Flows [44.684952377918904]
GAN(Generative Adversarial Networks)は、高品質なサンプルを生成することができるが、サンプル周辺の確率密度を見積もることはできない。
提案手法は, より高速に収束し, 類似したアーキテクチャでGANに匹敵するサンプル品質を生成し, 一般的に使用されるデータセットの過度な適合を回避し, トレーニングデータのスムーズな低次元潜在表現を生成する。
論文 参考訳(メタデータ) (2023-07-19T10:26:29Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Generation of data on discontinuous manifolds via continuous stochastic
non-invertible networks [6.201770337181472]
連続ネットワークを用いて不連続分布を生成する方法を示す。
コスト関数と情報理論の定式化の関係を導出する。
提案手法を合成2次元分布に適用し,不連続分布の再構成と生成の両立を実証する。
論文 参考訳(メタデータ) (2021-12-17T17:39:59Z) - Inferential Wasserstein Generative Adversarial Networks [9.859829604054127]
自動エンコーダとWGANを融合する原理的フレームワークである新しい推論ワッサースタインGAN(iWGAN)モデルを導入する。
iWGANはモード崩壊の症状を大幅に緩和し、収束を高速化し、各サンプルの品質チェックの測定を行うことができる。
論文 参考訳(メタデータ) (2021-09-13T00:43:21Z) - Partition-Guided GANs [63.980473635585234]
私たちは、スペースを小さな領域に分割し、それぞれがよりシンプルな分布を持ち、各パーティションごとに異なるジェネレータを訓練するパーティションーを設計します。
これはラベルを必要とせずに教師なしの方法で実行される。
各種標準ベンチマーク実験の結果,提案手法が近年の手法を上回っていることがわかった。
論文 参考訳(メタデータ) (2021-04-02T00:06:53Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
GAN(Generative Adversarial Networks)は、高次元データのモデリングにおいて大きな可能性を秘めている。
本稿では,WGANの識別器の特性を活かした識別器コントラストの多様性について紹介する。
我々は、合成データと実世界の画像生成ベンチマークの両方において、大幅に改善された生成の利点を実証する。
論文 参考訳(メタデータ) (2020-04-05T01:50:16Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。