BAMLD: Bayesian Active Meta-Learning by Disagreement
- URL: http://arxiv.org/abs/2110.09943v1
- Date: Tue, 19 Oct 2021 13:06:51 GMT
- Title: BAMLD: Bayesian Active Meta-Learning by Disagreement
- Authors: Ivana Nikoloska and Osvaldo Simeone
- Abstract summary: This paper introduces an information-theoretic active task selection mechanism to decrease the number of labeling requests for meta-training tasks.
We report its empirical performance results that compare favourably against existing acquisition mechanisms.
- Score: 39.59987601426039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-efficient learning algorithms are essential in many practical
applications for which data collection and labeling is expensive or infeasible,
e.g., for autonomous cars. To address this problem, meta-learning infers an
inductive bias from a set of meta-training tasks in order to learn new, but
related, task using a small number of samples. Most studies assume the
meta-learner to have access to labeled data sets from a large number of tasks.
In practice, one may have available only unlabeled data sets from the tasks,
requiring a costly labeling procedure to be carried out before use in standard
meta-learning schemes. To decrease the number of labeling requests for
meta-training tasks, this paper introduces an information-theoretic active task
selection mechanism which quantifies the epistemic uncertainty via
disagreements among the predictions obtained under different inductive biases.
We detail an instantiation for nonparametric methods based on Gaussian Process
Regression, and report its empirical performance results that compare
favourably against existing heuristic acquisition mechanisms.
Related papers
- An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning [58.59343434538218]
We propose a simple but quite effective approach to predict accurate negative pseudo-labels of unlabeled data from an indirect learning perspective.
Our approach can be implemented in just few lines of code by only using off-the-shelf operations.
arXiv Detail & Related papers (2022-09-28T02:11:34Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
We propose a regularization technique for meta-learning models that gives the model designer more control over the information flow during meta-training.
Our proposed regularization function shows an accuracy boost of $sim$ $36%$ on the Omniglot dataset.
arXiv Detail & Related papers (2021-01-24T22:57:19Z) - Variable-Shot Adaptation for Online Meta-Learning [123.47725004094472]
We study the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks.
We find that meta-learning solves the full task set with fewer overall labels and greater cumulative performance, compared to standard supervised methods.
These results suggest that meta-learning is an important ingredient for building learning systems that continuously learn and improve over a sequence of problems.
arXiv Detail & Related papers (2020-12-14T18:05:24Z) - Self-Supervised Meta-Learning for Few-Shot Natural Language
Classification Tasks [40.97125791174191]
We propose a self-supervised approach to generate a large, rich, meta-learning task distribution from unlabeled text.
We show that this meta-training leads to better few-shot generalization than language-model pre-training followed by finetuning.
arXiv Detail & Related papers (2020-09-17T17:53:59Z) - A Markov Decision Process Approach to Active Meta Learning [24.50189361694407]
In supervised learning, we fit a single statistical model to a given data set, assuming that the data is associated with a singular task.
In meta-learning, the data is associated with numerous tasks, and we seek a model that may perform well on all tasks simultaneously.
arXiv Detail & Related papers (2020-09-10T15:45:34Z) - Probabilistic Active Meta-Learning [15.432006404678981]
We introduce task selection based on prior experience into a meta-learning algorithm.
We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.
arXiv Detail & Related papers (2020-07-17T12:51:42Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - Information-Theoretic Generalization Bounds for Meta-Learning and
Applications [42.275148861039895]
Key performance measure for meta-learning is the meta-generalization gap.
This paper presents novel information-theoretic upper bounds on the meta-generalization gap.
arXiv Detail & Related papers (2020-05-09T05:48:01Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
We develop a notion of incremental learning during the meta-training phase of meta-learning.
Our approach performs favorably at test time as compared to training a model with the full meta-training set.
arXiv Detail & Related papers (2020-02-11T01:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.