An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning
- URL: http://arxiv.org/abs/2209.13777v1
- Date: Wed, 28 Sep 2022 02:11:34 GMT
- Title: An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning
- Authors: Xiu-Shen Wei and He-Yang Xu and Faen Zhang and Yuxin Peng and Wei Zhou
- Abstract summary: We propose a simple but quite effective approach to predict accurate negative pseudo-labels of unlabeled data from an indirect learning perspective.
Our approach can be implemented in just few lines of code by only using off-the-shelf operations.
- Score: 58.59343434538218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised few-shot learning consists in training a classifier to adapt
to new tasks with limited labeled data and a fixed quantity of unlabeled data.
Many sophisticated methods have been developed to address the challenges this
problem comprises. In this paper, we propose a simple but quite effective
approach to predict accurate negative pseudo-labels of unlabeled data from an
indirect learning perspective, and then augment the extremely label-constrained
support set in few-shot classification tasks. Our approach can be implemented
in just few lines of code by only using off-the-shelf operations, yet it is
able to outperform state-of-the-art methods on four benchmark datasets.
Related papers
- Probably Approximately Precision and Recall Learning [62.912015491907994]
Precision and Recall are foundational metrics in machine learning.
One-sided feedback--where only positive examples are observed during training--is inherent in many practical problems.
We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions.
arXiv Detail & Related papers (2024-11-20T04:21:07Z) - Late Stopping: Avoiding Confidently Learning from Mislabeled Examples [61.00103151680946]
We propose a new framework, Late Stopping, which leverages the intrinsic robust learning ability of DNNs through a prolonged training process.
We empirically observe that mislabeled and clean examples exhibit differences in the number of epochs required for them to be consistently and correctly classified.
Experimental results on benchmark-simulated and real-world noisy datasets demonstrate that the proposed method outperforms state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-26T12:43:25Z) - Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions [4.18804572788063]
Pseudo-labeling is a crucial technique in semi-supervised learning (SSL)
We propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training.
arXiv Detail & Related papers (2023-08-15T00:27:18Z) - SLaM: Student-Label Mixing for Distillation with Unlabeled Examples [15.825078347452024]
We present a principled method for knowledge distillation with unlabeled examples that we call Student-Label Mixing (SLaM)
SLaM consistently improves over prior approaches by evaluating it on several standard benchmarks.
We give an algorithm improving the best-known sample complexity for learning halfspaces with margin under random classification noise.
arXiv Detail & Related papers (2023-02-08T00:14:44Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Using Self-Supervised Pretext Tasks for Active Learning [7.214674613451605]
We propose a novel active learning approach that utilizes self-supervised pretext tasks and a unique data sampler to select data that are both difficult and representative.
The pretext task learner is trained on the unlabeled set, and the unlabeled data are sorted and grouped into batches by their pretext task losses.
In each iteration, the main task model is used to sample the most uncertain data in a batch to be annotated.
arXiv Detail & Related papers (2022-01-19T07:58:06Z) - Few-shot Learning via Dependency Maximization and Instance Discriminant
Analysis [21.8311401851523]
We study the few-shot learning problem, where a model learns to recognize new objects with extremely few labeled data per category.
We propose a simple approach to exploit unlabeled data accompanying the few-shot task for improving few-shot performance.
arXiv Detail & Related papers (2021-09-07T02:19:01Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.