論文の概要: DPFM: Deep Partial Functional Maps
- arxiv url: http://arxiv.org/abs/2110.09994v1
- Date: Tue, 19 Oct 2021 14:05:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-20 13:16:30.456331
- Title: DPFM: Deep Partial Functional Maps
- Title(参考訳): DPFM: 深い部分関数型マップ
- Authors: Souhaib Attaiki, Gautam Pai, Maks Ovsjanikov
- Abstract要約: 我々は、潜在的に有意な部分性を有する非剛体形状間の密接な対応を計算することの問題を考察する。
部分的な非剛体形状対応を直接目的とする初等学習手法を提案する。
我々のアプローチは関数マップフレームワークを使用し、教師なしまたは教師なしの方法で訓練し、データから直接記述子を学習する。
- 参考スコア(独自算出の注目度): 28.045544079256686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of computing dense correspondences between non-rigid
shapes with potentially significant partiality. Existing formulations tackle
this problem through heavy manifold optimization in the spectral domain, given
hand-crafted shape descriptors. In this paper, we propose the first learning
method aimed directly at partial non-rigid shape correspondence. Our approach
uses the functional map framework, can be trained in a supervised or
unsupervised manner, and learns descriptors directly from the data, thus both
improving robustness and accuracy in challenging cases. Furthermore, unlike
existing techniques, our method is also applicable to partial-to-partial
non-rigid matching, in which the common regions on both shapes are unknown a
priori. We demonstrate that the resulting method is data-efficient, and
achieves state-of-the-art results on several benchmark datasets. Our code and
data can be found online: https://github.com/pvnieo/DPFM
- Abstract(参考訳): 我々は、潜在的に有意な部分性を有する非剛体形状間の密接な対応を計算する問題を考える。
既存の定式化は、手作り形状記述子を与えられたスペクトル領域の重い多様体最適化によってこの問題に対処する。
本稿では,部分的非剛性形状対応を指向した最初の学習法を提案する。
提案手法では, 関数マップフレームワークを用いて, 教師なしあるいは教師なしの方法で訓練し, データから直接記述子を学習することにより, 難題の堅牢性と精度を向上させる。
さらに, 従来の手法と異なり, 本手法は, 両形状の共通領域が未知である部分的・部分的非剛性マッチングにも適用可能である。
本手法はデータ効率が良く,いくつかのベンチマークデータセットにおいて最先端の結果が得られることを示す。
私たちのコードとデータはオンラインで見つけることができます。
関連論文リスト
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
本稿では,データ駆動型およびオーバーフィット型手法のプロースを推進し,より一般化し,高速な推論を行い,より高精度なニューラルネットワークSDFを学習する手法を提案する。
そこで本研究では,距離管理やクリーンポイントクラウド,あるいは点正規化を伴わずに,データ駆動型プリエントを微調整できる新しい統計的推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-25T16:48:44Z) - Non-Rigid Shape Registration via Deep Functional Maps Prior [1.9249120068573227]
本研究では,非剛体形状登録のための学習ベースフレームワークを提案する。
我々は、高次元埋め込みによって誘導される対応によって誘導されるターゲットポイントクラウドに向かって、ソースメッシュを変形する。
我々のパイプラインは、厳密でないクラウドマッチングのいくつかのベンチマークで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-11-08T06:52:57Z) - On Unsupervised Partial Shape Correspondence [9.175560202201819]
関数写像は部分性を呼び出すと推定された一致に誤差をもたらすと論じる。
部分形状マッチングのための新しい手法を提案する。
提案手法はSHREC'16データセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-23T08:32:50Z) - Neural Semantic Surface Maps [52.61017226479506]
本稿では,2つの属とゼロの形状の地図を自動計算する手法を提案する。
提案手法は,手動のアノテーションや3Dトレーニングデータ要求を排除し,意味的表面-表面マップを生成する。
論文 参考訳(メタデータ) (2023-09-09T16:21:56Z) - Unsupervised Learning of Robust Spectral Shape Matching [12.740151710302397]
頑健な3次元形状マッチングのための新しい学習手法を提案する。
提案手法は, 深い関数型マップ上に構築され, 完全に教師なしの方法で訓練することができる。
論文 参考訳(メタデータ) (2023-04-27T02:12:47Z) - PatchRD: Detail-Preserving Shape Completion by Learning Patch Retrieval
and Deformation [59.70430570779819]
本稿では,3次元形状の欠落領域の幾何学的詳細化に焦点を当てたデータ駆動型形状補完手法を提案する。
私たちの重要な洞察は、部分的な入力から完全な欠落したリージョンへのパッチのコピーとデフォームです。
部分的な入力からパッチを抽出することで繰り返しパターンを活用し、ニューラルネットワークを用いてグローバルな構造的先行点を学習し、検索と変形の手順を導出する。
論文 参考訳(メタデータ) (2022-07-24T18:59:09Z) - Probabilistic Registration for Gaussian Process 3D shape modelling in
the presence of extensive missing data [63.8376359764052]
本稿では,ガウス過程の定式化に基づく形状適合/登録手法を提案する。
様々な変換を持つ2次元の小さなデータセットと耳の3次元データセットの両方で実験が行われる。
論文 参考訳(メタデータ) (2022-03-26T16:48:27Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
我々は、点雲上に定義された学習関数に関する地図を同期させることにより、複数の非剛体形状を登録する新しい方法であるSyNoRiMを提案する。
提案手法は,登録精度において最先端の性能を達成できることを実証する。
論文 参考訳(メタデータ) (2021-11-25T02:37:59Z) - Spectral Unions of Partial Deformable 3D Shapes [31.93707121229739]
まず, 与えられた部分形状間の密接な対応を第一に解くことなく, 非剛性変形形状の合成を計算する最初の方法を提案する。
我々のアプローチはデータ駆動であり、表面の等尺および非等尺変形に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T14:19:18Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - Deep Geometric Functional Maps: Robust Feature Learning for Shape
Correspondence [31.840880075039944]
非剛体3次元形状間の対応性を計算するための新しい学習手法を提案する。
提案手法の鍵となるのは, 生形状から直接学習する特徴抽出ネットワークである。
論文 参考訳(メタデータ) (2020-03-31T15:20:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。