Contrastive Active Inference
- URL: http://arxiv.org/abs/2110.10083v4
- Date: Mon, 15 Jan 2024 18:49:36 GMT
- Title: Contrastive Active Inference
- Authors: Pietro Mazzaglia and Tim Verbelen and Bart Dhoedt
- Abstract summary: We propose a contrastive objective for active inference that reduces the computational burden in learning the agent's generative model and planning future actions.
Our method performs notably better than likelihood-based active inference in image-based tasks, while also being computationally cheaper and easier to train.
- Score: 12.361539023886161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active inference is a unifying theory for perception and action resting upon
the idea that the brain maintains an internal model of the world by minimizing
free energy. From a behavioral perspective, active inference agents can be seen
as self-evidencing beings that act to fulfill their optimistic predictions,
namely preferred outcomes or goals. In contrast, reinforcement learning
requires human-designed rewards to accomplish any desired outcome. Although
active inference could provide a more natural self-supervised objective for
control, its applicability has been limited because of the shortcomings in
scaling the approach to complex environments. In this work, we propose a
contrastive objective for active inference that strongly reduces the
computational burden in learning the agent's generative model and planning
future actions. Our method performs notably better than likelihood-based active
inference in image-based tasks, while also being computationally cheaper and
easier to train. We compare to reinforcement learning agents that have access
to human-designed reward functions, showing that our approach closely matches
their performance. Finally, we also show that contrastive methods perform
significantly better in the case of distractors in the environment and that our
method is able to generalize goals to variations in the background. Website and
code: https://contrastive-aif.github.io/
Related papers
- Learning to Assist Humans without Inferring Rewards [65.28156318196397]
We build upon prior work that studies assistance through the lens of empowerment.
An assistive agent aims to maximize the influence of the human's actions.
We prove that these representations estimate a similar notion of empowerment to that studied by prior work.
arXiv Detail & Related papers (2024-11-04T21:31:04Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
We introduce an output-probabilistic, temporally predictive, modular artificial neural network architecture.
We show that our architecture develops latent states that can be interpreted as affordance maps.
In combination with active inference, we show that flexible, goal-directed behavior can be invoked.
arXiv Detail & Related papers (2022-02-23T14:13:04Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Learning Human Rewards by Inferring Their Latent Intelligence Levels in
Multi-Agent Games: A Theory-of-Mind Approach with Application to Driving Data [18.750834997334664]
We argue that humans are bounded rational and have different intelligence levels when reasoning about others' decision-making process.
We propose a new multi-agent Inverse Reinforcement Learning framework that reasons about humans' latent intelligence levels during learning.
arXiv Detail & Related papers (2021-03-07T07:48:31Z) - Intrinsic Motivation for Encouraging Synergistic Behavior [55.10275467562764]
We study the role of intrinsic motivation as an exploration bias for reinforcement learning in sparse-reward synergistic tasks.
Our key idea is that a good guiding principle for intrinsic motivation in synergistic tasks is to take actions which affect the world in ways that would not be achieved if the agents were acting on their own.
arXiv Detail & Related papers (2020-02-12T19:34:51Z) - Mutual Information-based State-Control for Intrinsically Motivated
Reinforcement Learning [102.05692309417047]
In reinforcement learning, an agent learns to reach a set of goals by means of an external reward signal.
In the natural world, intelligent organisms learn from internal drives, bypassing the need for external signals.
We propose to formulate an intrinsic objective as the mutual information between the goal states and the controllable states.
arXiv Detail & Related papers (2020-02-05T19:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.