Online reinforcement learning with sparse rewards through an active
inference capsule
- URL: http://arxiv.org/abs/2106.02390v1
- Date: Fri, 4 Jun 2021 10:03:36 GMT
- Title: Online reinforcement learning with sparse rewards through an active
inference capsule
- Authors: Alejandro Daniel Noel (1), Charel van Hoof (1), Beren Millidge (2)
((1) Delft University of Technology, (2) University of Oxford)
- Abstract summary: This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intelligent agents must pursue their goals in complex environments with
partial information and often limited computational capacity. Reinforcement
learning methods have achieved great success by creating agents that optimize
engineered reward functions, but which often struggle to learn in sparse-reward
environments, generally require many environmental interactions to perform
well, and are typically computationally very expensive. Active inference is a
model-based approach that directs agents to explore uncertain states while
adhering to a prior model of their goal behaviour. This paper introduces an
active inference agent which minimizes the novel free energy of the expected
future. Our model is capable of solving sparse-reward problems with a very high
sample efficiency due to its objective function, which encourages directed
exploration of uncertain states. Moreover, our model is computationally very
light and can operate in a fully online manner while achieving comparable
performance to offline RL methods. We showcase the capabilities of our model by
solving the mountain car problem, where we demonstrate its superior exploration
properties and its robustness to observation noise, which in fact improves
performance. We also introduce a novel method for approximating the prior model
from the reward function, which simplifies the expression of complex objectives
and improves performance over previous active inference approaches.
Related papers
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
This paper investigates how to achieve sample-efficient exploration in continuous control tasks.
We introduce an RL algorithm that incorporates a predictive model and off-policy learning elements.
We derive an intrinsic reward without incurring parameters overhead.
arXiv Detail & Related papers (2024-03-31T11:39:11Z) - Self-Supervised Reinforcement Learning that Transfers using Random
Features [41.00256493388967]
We propose a self-supervised reinforcement learning method that enables the transfer of behaviors across tasks with different rewards.
Our method is self-supervised in that it can be trained on offline datasets without reward labels, but can then be quickly deployed on new tasks.
arXiv Detail & Related papers (2023-05-26T20:37:06Z) - Self-supervised network distillation: an effective approach to exploration in sparse reward environments [0.0]
Reinforcement learning can train an agent to behave in an environment according to a predesigned reward function.
The solution to such a problem may be to equip the agent with an intrinsic motivation that will provide informed exploration.
We present Self-supervised Network Distillation (SND), a class of intrinsic motivation algorithms based on the distillation error as a novelty indicator.
arXiv Detail & Related papers (2023-02-22T18:58:09Z) - CostNet: An End-to-End Framework for Goal-Directed Reinforcement
Learning [9.432068833600884]
Reinforcement Learning (RL) is a general framework concerned with an agent that seeks to maximize rewards in an environment.
There are two approaches, model-based and model-free reinforcement learning, that show concrete results in several disciplines.
This paper introduces a novel reinforcement learning algorithm for predicting the distance between two states in a Markov Decision Process.
arXiv Detail & Related papers (2022-10-03T21:16:14Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Hindsight Reward Tweaking via Conditional Deep Reinforcement Learning [37.61951923445689]
We propose a novel paradigm for deep reinforcement learning to model the influences of reward functions within a near-optimal space.
We demonstrate the feasibility of this approach and study one of its potential application in policy performance boosting with multiple MuJoCo tasks.
arXiv Detail & Related papers (2021-09-06T10:06:48Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.