FriendlyCore: Practical Differentially Private Aggregation
- URL: http://arxiv.org/abs/2110.10132v1
- Date: Tue, 19 Oct 2021 17:43:50 GMT
- Title: FriendlyCore: Practical Differentially Private Aggregation
- Authors: Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer
- Abstract summary: We propose a simple and practical tool $mathsfFriendlyCore$ that takes a set of points $cal D$ from an unrestricted (pseudo) metric space as input.
When $cal D$ has effective diameter $r$, $mathsfFriendlyCore$ returns a "stable" subset $cal D_Gsubseteq cal D$ that includes all points.
$mathsfFriendlyCore$ can be used to preprocess the input before privately aggregating it, potentially simplifying the aggregation or boosting its accuracy
- Score: 67.04951703461657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private algorithms for common metric aggregation tasks, such
as clustering or averaging, often have limited practicality due to their
complexity or a large number of data points that is required for accurate
results. We propose a simple and practical tool $\mathsf{FriendlyCore}$ that
takes a set of points ${\cal D}$ from an unrestricted (pseudo) metric space as
input. When ${\cal D}$ has effective diameter $r$, $\mathsf{FriendlyCore}$
returns a "stable" subset ${\cal D}_G\subseteq {\cal D}$ that includes all
points, except possibly few outliers, and is {\em certified} to have diameter
$r$. $\mathsf{FriendlyCore}$ can be used to preprocess the input before
privately aggregating it, potentially simplifying the aggregation or boosting
its accuracy. Surprisingly, $\mathsf{FriendlyCore}$ is light-weight with no
dependence on the dimension. We empirically demonstrate its advantages in
boosting the accuracy of mean estimation, outperforming tailored methods.
Related papers
- Simple, Scalable and Effective Clustering via One-Dimensional
Projections [10.807367640692021]
Clustering is a fundamental problem in unsupervised machine learning with many applications in data analysis.
We introduce a simple randomized clustering algorithm that provably runs in expected time $O(mathrmnnz(X) + nlog n)$ for arbitrary $k$.
We prove that our algorithm achieves approximation ratio $smashwidetildeO(k4)$ on any input dataset for the $k$-means objective.
arXiv Detail & Related papers (2023-10-25T16:37:45Z) - Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces [2.687607197645453]
We show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
We also show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
arXiv Detail & Related papers (2023-05-12T08:43:28Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering [42.526664955704746]
We develop a novel, conceptually simpler technique for list-decodable sparse mean estimation.
In particular, for distributions with "certifiably bounded" $t-th moments in $k$-sparse directions, our algorithm achieves error of $(1/alpha)O (1/t)$ with sample complexity $m = (klog(n))O(t)/alpha(mnt)$.
For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $Theta (sqrtlog
arXiv Detail & Related papers (2022-06-10T17:38:18Z) - Distributed k-Means with Outliers in General Metrics [0.6117371161379208]
We present a distributed coreset-based 3-round approximation algorithm for k-means with $z$ outliers for general metric spaces.
An important feature of our algorithm is that it obliviously adapts to the intrinsic complexity of the dataset, captured by the dimension doubling $D$ of the metric space.
arXiv Detail & Related papers (2022-02-16T16:24:31Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms.
We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling"
We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $Ngg n$ regime.
arXiv Detail & Related papers (2020-06-02T16:38:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.