Metric Embeddings Beyond Bi-Lipschitz Distortion via Sherali-Adams
- URL: http://arxiv.org/abs/2311.17840v3
- Date: Thu, 15 May 2025 19:04:15 GMT
- Title: Metric Embeddings Beyond Bi-Lipschitz Distortion via Sherali-Adams
- Authors: Ainesh Bakshi, Vincent Cohen-Addad, Samuel B. Hopkins, Rajesh Jayaram, Silvio Lattanzi,
- Abstract summary: We give the first approximation algorithm for MDS with quasi-polynomial dependency on $Delta.<n>Our algorithms are based on a novel geometry-aware analysis of a conditional rounding of the Sherali-Adams LP.
- Score: 34.7582575446942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metric embeddings are a widely used method in algorithm design, where generally a ``complex'' metric is embedded into a simpler, lower-dimensional one. Historically, the theoretical computer science community has focused on bi-Lipschitz embeddings, which guarantee that every pairwise distance is approximately preserved. In contrast, alternative embedding objectives that are commonly used in practice avoid bi-Lipschitz distortion; yet these approaches have received comparatively less study in theory. In this paper, we focus on Multi-dimensional Scaling (MDS), where we are given a set of non-negative dissimilarities $\{d_{i,j}\}_{i,j\in [n]}$ over $n$ points, and the goal is to find an embedding $\{x_1,\dots,x_n\} \subset R^k$ that minimizes $$\textrm{OPT}=\min_{x}\mathbb{E}_{i,j\in [n]}\left(1-\frac{\|x_i - x_j\|}{d_{i,j}}\right)^2.$$ Despite its popularity, our theoretical understanding of MDS is extremely limited. Recently, Demaine et. al. (arXiv:2109.11505) gave the first approximation algorithm with provable guarantees for this objective, which achieves an embedding in constant dimensional Euclidean space with cost $\textrm{OPT} +\epsilon$ in $n^2\cdot 2^{\textrm{poly}(\Delta/\epsilon)}$ time, where $\Delta$ is the aspect ratio of the input dissimilarities. For metrics that admit low-cost embeddings, $\Delta$ scales polynomially in $n$. In this work, we give the first approximation algorithm for MDS with quasi-polynomial dependency on $\Delta$: for constant dimensional Euclidean space, we achieve a solution with cost $O(\log \Delta)\cdot \textrm{OPT}^{\Omega(1)}+\epsilon$ in time $n^{O(1)} \cdot 2^{\text{poly}((\log(\Delta)/\epsilon))}$. Our algorithms are based on a novel geometry-aware analysis of a conditional rounding of the Sherali-Adams LP Hierarchy, allowing us to avoid exponential dependency on the aspect ratio, which would typically result from this rounding.
Related papers
- Learning and Computation of $Φ$-Equilibria at the Frontier of Tractability [85.07238533644636]
$Phi$-equilibria is a powerful and flexible framework at the heart of online learning and game theory.
We show that an efficient online algorithm incurs average $Phi$-regret at most $epsilon$ using $textpoly(d, k)/epsilon2$ rounds.
We also show nearly matching lower bounds in the online setting, thereby obtaining for the first time a family of deviations that captures the learnability of $Phi$-regret.
arXiv Detail & Related papers (2025-02-25T19:08:26Z) - Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Online Newton Method for Bandit Convex Optimisation [28.66596225688161]
We introduce a computationally efficient algorithm for zeroth-order bandit convex optimisation.
We prove that in the adversarial setting its regret is at most $d3.5 sqrtn mathrmpolylog(n, d)$ with high probability where $d$ is the time horizon.
In the setting the bound improves to $M d2 sqrtn mathrmpolylog(n, d)$ where $M in [d-1/2, d-1 / 4]$ is
arXiv Detail & Related papers (2024-06-10T17:44:11Z) - Mirror Descent Algorithms with Nearly Dimension-Independent Rates for
Differentially-Private Stochastic Saddle-Point Problems [6.431793114484429]
We propose $sqrtlog(d)/sqrtn + log(d)/[nvarepsilon]2/5$ to solve the problem of differentially-private saddle-points in the polyhedral setting.
We show that our algorithms attain a rate of $sqrtlog(d)/sqrtn + log(d)/[nvarepsilon]2/5$ with constant success.
arXiv Detail & Related papers (2024-03-05T12:28:00Z) - Best-of-Both-Worlds Algorithms for Linear Contextual Bandits [11.94312915280916]
We study best-of-both-worlds algorithms for $K$-armed linear contextual bandits.
Our algorithms deliver near-optimal regret bounds in both the adversarial and adversarial regimes.
arXiv Detail & Related papers (2023-12-24T08:27:30Z) - Solving Dense Linear Systems Faster Than via Preconditioning [1.8854491183340518]
We show that our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
In particular, our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
Our main algorithm can be viewed as a randomized block coordinate descent method.
arXiv Detail & Related papers (2023-12-14T12:53:34Z) - Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space [10.292118864147097]
We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods.
Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution $pi$ over $mathbbRd$ by a product measure $pistar$.
As a byproduct of our analysis, we obtain the first end-to-end analysis for gradient-based algorithms for MFVI.
arXiv Detail & Related papers (2023-12-05T16:02:04Z) - Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces [2.687607197645453]
We show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
We also show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
arXiv Detail & Related papers (2023-05-12T08:43:28Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
This work considers the sample complexity of obtaining an $varepsilon$-optimal policy in an average reward Markov Decision Process (AMDP)
We prove an upper bound of $widetilde O(H varepsilon-3 ln frac1delta)$ samples per state-action pair, where $H := sp(h*)$ is the span of bias of any optimal policy, $varepsilon$ is the accuracy and $delta$ is the failure probability.
arXiv Detail & Related papers (2022-12-01T15:57:58Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
We consider episodic reinforcement learning in reward-mixing Markov decision processes (RMMDPs)
Our goal is to learn a near-optimal policy that nearly maximizes the $H$ time-step cumulative rewards in such a model.
arXiv Detail & Related papers (2022-10-05T22:52:00Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Computationally Efficient Horizon-Free Reinforcement Learning for Linear
Mixture MDPs [111.75736569611159]
We propose the first computationally efficient horizon-free algorithm for linear mixture MDPs.
Our algorithm adapts a weighted least square estimator for the unknown transitional dynamic.
This also improves upon the best-known algorithms in this setting when $sigma_k2$'s are known.
arXiv Detail & Related papers (2022-05-23T17:59:18Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Faster Binary Embeddings for Preserving Euclidean Distances [9.340611077939828]
We propose a fast, distance-preserving, binary embedding algorithm to transform a dataset $mathcalTsubseteqmathbbRn$ into binary sequences in the cube $pm 1m$.
Our method is both fast and memory efficient, with time complexity $O(m)$ and space complexity $O(m)$.
arXiv Detail & Related papers (2020-10-01T22:41:41Z) - On Efficient Low Distortion Ultrametric Embedding [18.227854382422112]
A widely-used method to preserve the underlying hierarchical structure of the data is to find an embedding of the data into a tree or an ultrametric.
In this paper, we provide a new algorithm which takes as input a set of points isometric in $mathbbRd2 (for universal constant $rho>1$) to output an ultrametric $Delta.
We show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.
arXiv Detail & Related papers (2020-08-15T11:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.