Learning Equivariances and Partial Equivariances from Data
- URL: http://arxiv.org/abs/2110.10211v1
- Date: Tue, 19 Oct 2021 19:17:32 GMT
- Title: Learning Equivariances and Partial Equivariances from Data
- Authors: David W. Romero, Suhas Lohit
- Abstract summary: Group equivariant Convolutional Neural Networks (G-CNNs) constrain features to respect the chosen symmetries, and lead to better generalization when these symmetries appear in the data.
We introduce Partial G-CNNs: a family of equivariant networks able to learn partial and full equivariances from data at every layer end-to-end.
- Score: 11.548853370822345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group equivariant Convolutional Neural Networks (G-CNNs) constrain features
to respect the chosen symmetries, and lead to better generalization when these
symmetries appear in the data. However, if the chosen symmetries are not
present, group equivariant architectures lead to overly constrained models and
worse performance. Frequently, the distribution of the data can be better
represented by a subset of a group than by the group as a whole, e.g.,
rotations in $[-90^{\circ}, 90^{\circ}]$. In such cases, a model that respects
equivariance partially is better suited to represent the data. Moreover,
relevant symmetries may differ for low and high-level features, e.g., edge
orientations in a face, and face poses relative to the camera. As a result, the
optimal level of equivariance may differ per layer. In this work, we introduce
Partial G-CNNs: a family of equivariant networks able to learn partial and full
equivariances from data at every layer end-to-end. Partial G-CNNs retain full
equivariance whenever beneficial, e.g., for rotated MNIST, but are able to
restrict it whenever it becomes harmful, e.g., for 6~/~9 or natural image
classification. Partial G-CNNs perform on par with G-CNNs when full
equivariance is necessary, and outperform them otherwise. Our method is
applicable to discrete groups, continuous groups and combinations thereof.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts [21.397064770689795]
Group Equivariant CNNs (G-CNNs) have shown promising efficacy in various tasks, owing to their ability to capture hierarchical features in an equivariant manner.
We propose a novel approach, Variational Partial G-CNN (VP G-CNN), to capture varying levels of partial equivariance specific to each data instance.
We demonstrate the effectiveness of VP G-CNN on both toy and real-world datasets, including M67-180, CIFAR10, ColorMNIST, and Flowers102.
arXiv Detail & Related papers (2024-07-05T05:52:51Z) - A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs [5.141137421503899]
Steerable convolutional neural networks (SCNNs) enhance task performance by modelling geometric symmetries.
Yet, unknown or varying symmetries can lead to overconstrained weights and decreased performance.
This paper introduces a probabilistic method to learn the degree of equivariance in SCNNs.
arXiv Detail & Related papers (2024-06-06T10:45:19Z) - Architectural Optimization over Subgroups for Equivariant Neural
Networks [0.0]
We propose equivariance relaxation morphism and $[G]$-mixed equivariant layer to operate with equivariance constraints on a subgroup.
We present evolutionary and differentiable neural architecture search (NAS) algorithms that utilize these mechanisms respectively for equivariance-aware architectural optimization.
arXiv Detail & Related papers (2022-10-11T14:37:29Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Group Equivariant Subsampling [60.53371517247382]
Subsampling is used in convolutional neural networks (CNNs) in the form of pooling or strided convolutions.
We first introduce translation equivariant subsampling/upsampling layers that can be used to construct exact translation equivariant CNNs.
We then generalise these layers beyond translations to general groups, thus proposing group equivariant subsampling/upsampling.
arXiv Detail & Related papers (2021-06-10T16:14:00Z) - Symmetry-driven graph neural networks [1.713291434132985]
We introduce two graph network architectures that are equivariant to several types of transformations affecting the node coordinates.
We demonstrate these capabilities on a synthetic dataset composed of $n$-dimensional geometric objects.
arXiv Detail & Related papers (2021-05-28T18:54:12Z) - Group Equivariant Conditional Neural Processes [30.134634059773703]
We present the group equivariant conditional neural process (EquivCNP)
We show that EquivCNP achieves comparable performance to conventional conditional neural processes in a 1D regression task.
arXiv Detail & Related papers (2021-02-17T13:50:07Z) - Learning Invariances in Neural Networks [51.20867785006147]
We show how to parameterize a distribution over augmentations and optimize the training loss simultaneously with respect to the network parameters and augmentation parameters.
We can recover the correct set and extent of invariances on image classification, regression, segmentation, and molecular property prediction from a large space of augmentations.
arXiv Detail & Related papers (2020-10-22T17:18:48Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.