A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs
- URL: http://arxiv.org/abs/2406.03946v2
- Date: Wed, 14 Aug 2024 13:39:47 GMT
- Title: A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs
- Authors: Lars Veefkind, Gabriele Cesa,
- Abstract summary: Steerable convolutional neural networks (SCNNs) enhance task performance by modelling geometric symmetries.
Yet, unknown or varying symmetries can lead to overconstrained weights and decreased performance.
This paper introduces a probabilistic method to learn the degree of equivariance in SCNNs.
- Score: 5.141137421503899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Steerable convolutional neural networks (SCNNs) enhance task performance by modelling geometric symmetries through equivariance constraints on weights. Yet, unknown or varying symmetries can lead to overconstrained weights and decreased performance. To address this, this paper introduces a probabilistic method to learn the degree of equivariance in SCNNs. We parameterise the degree of equivariance as a likelihood distribution over the transformation group using Fourier coefficients, offering the option to model layer-wise and shared equivariance. These likelihood distributions are regularised to ensure an interpretable degree of equivariance across the network. Advantages include the applicability to many types of equivariant networks through the flexible framework of SCNNs and the ability to learn equivariance with respect to any subgroup of any compact group without requiring additional layers. Our experiments reveal competitive performance on datasets with mixed symmetries, with learnt likelihood distributions that are representative of the underlying degree of equivariance.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts [21.397064770689795]
Group Equivariant CNNs (G-CNNs) have shown promising efficacy in various tasks, owing to their ability to capture hierarchical features in an equivariant manner.
We propose a novel approach, Variational Partial G-CNN (VP G-CNN), to capture varying levels of partial equivariance specific to each data instance.
We demonstrate the effectiveness of VP G-CNN on both toy and real-world datasets, including M67-180, CIFAR10, ColorMNIST, and Flowers102.
arXiv Detail & Related papers (2024-07-05T05:52:51Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance.
symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted.
Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients.
arXiv Detail & Related papers (2023-10-09T20:22:43Z) - On genuine invariance learning without weight-tying [6.308539010172309]
We analyze invariance learning in neural networks without weight-tying constraints.
We show that learned invariance is strongly conditioned on the input data, rendering it unreliable if the input distribution shifts.
arXiv Detail & Related papers (2023-08-07T20:41:19Z) - Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance [16.49488981364657]
We present a novel framework to overcome the limitations of equivariant architectures in learning functions with group symmetries.
We use an arbitrary base model such as anvariant or a transformer and symmetrize it to be equivariant to the given group.
Empirical tests show competitive results against tailored equivariant architectures.
arXiv Detail & Related papers (2023-06-05T13:40:54Z) - The Lie Derivative for Measuring Learned Equivariance [84.29366874540217]
We study the equivariance properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer architectures.
We find that many violations of equivariance can be linked to spatial aliasing in ubiquitous network layers, such as pointwise non-linearities.
For example, transformers can be more equivariant than convolutional neural networks after training.
arXiv Detail & Related papers (2022-10-06T15:20:55Z) - Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift [91.38796390449504]
Combinations of domains and labels are not observed during training but appear in the test environment.
We provide a unique formulation of the combination shift problem based on the concepts of homomorphism, equivariance, and a refined definition of disentanglement.
arXiv Detail & Related papers (2022-08-03T12:31:31Z) - Relaxing Equivariance Constraints with Non-stationary Continuous Filters [20.74154804898478]
The proposed parameterization can be thought of as a building block to allow adjustable symmetry structure in neural networks.
Compared to non-equivariant or strict-equivariant baselines, we experimentally verify that soft equivariance leads to improved performance in terms of test accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
arXiv Detail & Related papers (2022-04-14T18:08:36Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Learning Invariant Weights in Neural Networks [16.127299898156203]
Many commonly used models in machine learning are constraint to respect certain symmetries in the data.
We propose a weight-space equivalent to this approach, by minimizing a lower bound on the marginal likelihood to learn invariances in neural networks.
arXiv Detail & Related papers (2022-02-25T00:17:09Z) - Learning Invariances in Neural Networks [51.20867785006147]
We show how to parameterize a distribution over augmentations and optimize the training loss simultaneously with respect to the network parameters and augmentation parameters.
We can recover the correct set and extent of invariances on image classification, regression, segmentation, and molecular property prediction from a large space of augmentations.
arXiv Detail & Related papers (2020-10-22T17:18:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.