論文の概要: Simpler Does It: Generating Semantic Labels with Objectness Guidance
- arxiv url: http://arxiv.org/abs/2110.10335v1
- Date: Wed, 20 Oct 2021 01:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-24 02:59:55.621440
- Title: Simpler Does It: Generating Semantic Labels with Objectness Guidance
- Title(参考訳): シンプルに - objectness guidance による意味的ラベルの生成
- Authors: Md Amirul Islam, Matthew Kowal, Sen Jia, Konstantinos G. Derpanis,
Neil D. B. Bruce
- Abstract要約: 本稿では、画像のトレーニングのための擬似ラベルを生成する新しいフレームワークについて述べる。
擬似ラベルを生成するには、(i)オブジェクトライクな領域を認識することを学習するクラス非依存のオブジェクトネスネットワーク、(ii)イメージレベルまたはバウンディングボックスアノテーションのいずれからの情報を組み合わせる。
本研究では,対象性ネットワークを自然に活用して,未知のカテゴリに対して対象のような領域を生成する方法を示すことによって,アプローチの有効性を示す。
- 参考スコア(独自算出の注目度): 32.81128493853064
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Existing weakly or semi-supervised semantic segmentation methods utilize
image or box-level supervision to generate pseudo-labels for weakly labeled
images. However, due to the lack of strong supervision, the generated
pseudo-labels are often noisy near the object boundaries, which severely
impacts the network's ability to learn strong representations. To address this
problem, we present a novel framework that generates pseudo-labels for training
images, which are then used to train a segmentation model. To generate
pseudo-labels, we combine information from: (i) a class agnostic objectness
network that learns to recognize object-like regions, and (ii) either
image-level or bounding box annotations. We show the efficacy of our approach
by demonstrating how the objectness network can naturally be leveraged to
generate object-like regions for unseen categories. We then propose an
end-to-end multi-task learning strategy, that jointly learns to segment
semantics and objectness using the generated pseudo-labels. Extensive
experiments demonstrate the high quality of our generated pseudo-labels and
effectiveness of the proposed framework in a variety of domains. Our approach
achieves better or competitive performance compared to existing
weakly-supervised and semi-supervised methods.
- Abstract(参考訳): 既存の弱いまたは半教師付きセマンティックセグメンテーション手法は、画像またはボックスレベルの監督を利用して、弱いラベル付き画像の擬似ラベルを生成する。
しかし、強い監督がないため、生成された擬似ラベルはしばしばオブジェクト境界付近で騒がしくなり、強力な表現を学習するネットワークの能力に大きな影響を与える。
この問題に対処するために、画像のトレーニングのための擬似ラベルを生成する新しいフレームワークを提案し、セグメンテーションモデルをトレーニングする。
擬似ラベルを生成するには、以下の情報を組み合わせる。
(i)オブジェクトライクな領域を認識することを学習するクラス非依存のオブジェクトネスネットワーク
(ii)画像レベルまたは境界ボックスアノテーション。
本研究では,対象性ネットワークを自然に活用して,未知のカテゴリに対して対象のような領域を生成する方法を示す。
そこで我々は,生成した擬似ラベルを用いてセマンティクスとオブジェクトのセグメンテーションを共同で学習する,エンドツーエンドのマルチタスク学習戦略を提案する。
広範囲にわたる実験により,生成した擬似ラベルの高品質化と,提案手法の有効性が実証された。
提案手法は,既存の弱教師付きおよび半教師付き手法と比較して,優れた性能と競争力を実現する。
関連論文リスト
- Semi-supervised Semantic Segmentation Meets Masked Modeling:Fine-grained
Locality Learning Matters in Consistency Regularization [31.333862320143968]
半教師付きセマンティックセグメンテーションはラベル付き画像と豊富なラベル付き画像を利用してラベル効率の高い学習を実現することを目的としている。
我々は,より詳細な局所性学習により,より高密度なセグメンテーションを実現する,textttMaskMatchという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T03:28:53Z) - DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition
with Limited Annotations [79.433122872973]
低ラベル体制における多ラベル画像認識は、大きな課題と実践的重要性の課題である。
我々は、何百万もの補助的な画像テキストペアで事前訓練されたテキストと視覚的特徴の強力なアライメントを活用する。
Evidence-guided Dual Context Optimization (DualCoOp++) という,効率的かつ効果的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-08-03T17:33:20Z) - Semantic Contrastive Bootstrapping for Single-positive Multi-label
Recognition [36.3636416735057]
本研究では,意味的コントラスト型ブートストラップ法(Scob)を用いて,オブジェクト間の関係を徐々に回復する手法を提案する。
次に、アイコン的オブジェクトレベルの表現を抽出する再帰的セマンティックマスク変換器を提案する。
大規模な実験結果から,提案手法が最先端のモデルを超えていることが示唆された。
論文 参考訳(メタデータ) (2023-07-15T01:59:53Z) - Exploiting Unlabeled Data with Vision and Language Models for Object
Detection [64.94365501586118]
堅牢で汎用的なオブジェクト検出フレームワークを構築するには、より大きなラベルスペースとより大きなトレーニングデータセットへのスケーリングが必要である。
本稿では,近年の視覚と言語モデルで利用可能なリッチなセマンティクスを利用して,未ラベル画像中のオブジェクトのローカライズと分類を行う手法を提案する。
生成した擬似ラベルの価値を,オープン語彙検出と半教師付きオブジェクト検出の2つのタスクで示す。
論文 参考訳(メタデータ) (2022-07-18T21:47:15Z) - Incremental Learning in Semantic Segmentation from Image Labels [18.404068463921426]
既存のセマンティックセグメンテーションアプローチは印象的な結果を得るが、新しいカテゴリが発見されるにつれてモデルを漸進的に更新することは困難である。
本稿では、安価で広く利用可能な画像レベルのラベルから新しいクラスを分類することを目的とした、Weakly Incremental Learning for Semanticsのための新しいフレームワークを提案する。
擬似ラベルをオフラインで生成する既存のアプローチとは対照的に、画像レベルのラベルで訓練され、セグメンテーションモデルで正規化される補助分類器を使用して、擬似スーパービジョンをオンラインで取得し、モデルを漸進的に更新する。
論文 参考訳(メタデータ) (2021-12-03T12:47:12Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - SSKD: Self-Supervised Knowledge Distillation for Cross Domain Adaptive
Person Re-Identification [25.96221714337815]
ドメイン適応型人物再識別(re-ID)は、ソースドメインとターゲットドメインの間に大きな違いがあるため、難しい課題である。
既存の手法は主にクラスタリングアルゴリズムによって未ラベルのターゲット画像の擬似ラベルを生成する。
本稿では,識別学習とソフトラベル学習の2つのモジュールを含む自己監督的知識蒸留(SSKD)手法を提案する。
論文 参考訳(メタデータ) (2020-09-13T10:12:02Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
我々は、オブジェクトの他の部分に注意を払うために、ネットワークを強制する単純で効果的なアプローチを提案する。
具体的には、画像の特徴をクラスタリングして、アノテーション付き親クラスごとに擬似サブカテゴリラベルを生成する。
提案手法の有効性を検証し,提案手法が最先端手法に対して良好に機能することを示す。
論文 参考訳(メタデータ) (2020-08-03T20:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。