Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover
- URL: http://arxiv.org/abs/2110.10391v1
- Date: Wed, 20 Oct 2021 06:15:45 GMT
- Title: Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover
- Authors: Wei Pu, Chao Zhou, Yonina C. Eldar and Miguel R.D. Rodrigues
- Abstract summary: We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
- Score: 87.28082715343896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider deep neural networks for solving inverse problems
that are robust to forward model mis-specifications. Specifically, we treat
sensing problems with model mismatch where one wishes to recover a sparse
high-dimensional vector from low-dimensional observations subject to
uncertainty in the measurement operator. We then design a new robust deep
neural network architecture by applying algorithm unfolding techniques to a
robust version of the underlying recovery problem. Our proposed network - named
Robust lEarned Shrinkage-Thresholding (REST) - exhibits an additional
normalization processing compared to Learned Iterative Shrinkage-Thresholding
Algorithm (LISTA), leading to reliable recovery of the signal under sample-wise
varying model mismatch. The proposed REST network is shown to outperform
state-of-the-art model-based and data-driven algorithms in both compressive
sensing and radar imaging problems wherein model mismatch is taken into
consideration.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
We present a modular framework that determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique.
We show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples.
arXiv Detail & Related papers (2020-11-09T11:02:40Z) - Interpolation between Residual and Non-Residual Networks [24.690238357686134]
We present a novel ODE model by adding a damping term.
It can be shown that the proposed model can recover both a ResNet and a CNN by adjusting an coefficient.
Experiments on a number of image classification benchmarks show that the proposed model substantially improves the accuracy of ResNet and ResNeXt.
arXiv Detail & Related papers (2020-06-10T09:36:38Z) - Interpretable Deep Recurrent Neural Networks via Unfolding Reweighted
$\ell_1$-$\ell_1$ Minimization: Architecture Design and Generalization
Analysis [19.706363403596196]
This paper develops a novel deep recurrent neural network (coined reweighted-RNN) by the unfolding of a reweighted minimization algorithm.
To the best of our knowledge, this is the first deep unfolding method that explores reweighted minimization.
The experimental results on the moving MNIST dataset demonstrate that the proposed deep reweighted-RNN significantly outperforms existing RNN models.
arXiv Detail & Related papers (2020-03-18T17:02:10Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.