Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations
- URL: http://arxiv.org/abs/2012.01806v3
- Date: Thu, 8 Apr 2021 03:25:14 GMT
- Title: Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations
- Authors: Tejas Gokhale, Rushil Anirudh, Bhavya Kailkhura, Jayaraman J.
Thiagarajan, Chitta Baral, Yezhou Yang
- Abstract summary: We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
- Score: 64.35805267250682
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While existing work in robust deep learning has focused on small pixel-level
norm-based perturbations, this may not account for perturbations encountered in
several real-world settings. In many such cases although test data might not be
available, broad specifications about the types of perturbations (such as an
unknown degree of rotation) may be known. We consider a setup where robustness
is expected over an unseen test domain that is not i.i.d. but deviates from the
training domain. While this deviation may not be exactly known, its broad
characterization is specified a priori, in terms of attributes. We propose an
adversarial training approach which learns to generate new samples so as to
maximize exposure of the classifier to the attributes-space, without having
access to the data from the test domain. Our adversarial training solves a
min-max optimization problem, with the inner maximization generating
adversarial perturbations, and the outer minimization finding model parameters
by optimizing the loss on adversarial perturbations generated from the inner
maximization. We demonstrate the applicability of our approach on three types
of naturally occurring perturbations -- object-related shifts, geometric
transformations, and common image corruptions. Our approach enables deep neural
networks to be robust against a wide range of naturally occurring
perturbations. We demonstrate the usefulness of the proposed approach by
showing the robustness gains of deep neural networks trained using our
adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR
dataset.
Related papers
- Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances [0.16874375111244325]
Deep convolutional networks (DNN) are increasingly being used to perform algorithm-selection in neural domains.
adversarial samples are successfully generated from up to 56% of the original instances depending on the dataset.
We use an evolutionary algorithm (EA) to find perturbations of instances from two existing benchmarks for online bin packing that cause trained DRNs to misclassify.
arXiv Detail & Related papers (2024-06-24T12:48:44Z) - On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations [0.0]
We investigate the effects of overfitting on the robustness of gradient-descent training when subject to uncertainty on the gradient estimation.
We show that the general overparametrized formulation introduces a set of spurious equilibria which lay outside the set where the loss function is minimized.
arXiv Detail & Related papers (2023-05-17T02:26:34Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Wide Network Learning with Differential Privacy [7.453881927237143]
Current generation of neural networks suffers significant loss accuracy under most practically relevant privacy training regimes.
We develop a general approach towards training these models that takes advantage of the sparsity of the gradients of private Empirical Minimization (ERM)
Following the same number of parameters, we propose a novel algorithm for privately training neural networks.
arXiv Detail & Related papers (2021-03-01T20:31:50Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - Learning perturbation sets for robust machine learning [97.6757418136662]
We use a conditional generator that defines the perturbation set over a constrained region of the latent space.
We measure the quality of our learned perturbation sets both quantitatively and qualitatively.
We leverage our learned perturbation sets to train models which are empirically and certifiably robust to adversarial image corruptions and adversarial lighting variations.
arXiv Detail & Related papers (2020-07-16T16:39:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.