Semi-supervised Domain Adaptation for Semantic Segmentation
- URL: http://arxiv.org/abs/2110.10639v1
- Date: Wed, 20 Oct 2021 16:13:00 GMT
- Title: Semi-supervised Domain Adaptation for Semantic Segmentation
- Authors: Ying Chen, Xu Ouyang, Kaiyue Zhu, Gady Agam
- Abstract summary: We propose a novel two-step semi-supervised dual-domain adaptation (SSDDA) approach to address both cross- and intra-domain gaps in semantic segmentation.
We demonstrate that the proposed approach outperforms state-of-the-art methods on two common synthetic-to-real semantic segmentation benchmarks.
- Score: 3.946367634483361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning approaches for semantic segmentation rely primarily on
supervised learning approaches and require substantial efforts in producing
pixel-level annotations. Further, such approaches may perform poorly when
applied to unseen image domains. To cope with these limitations, both
unsupervised domain adaptation (UDA) with full source supervision but without
target supervision and semi-supervised learning (SSL) with partial supervision
have been proposed. While such methods are effective at aligning different
feature distributions, there is still a need to efficiently exploit unlabeled
data to address the performance gap with respect to fully-supervised methods.
In this paper we address semi-supervised domain adaptation (SSDA) for semantic
segmentation, where a large amount of labeled source data as well as a small
amount of labeled target data are available. We propose a novel and effective
two-step semi-supervised dual-domain adaptation (SSDDA) approach to address
both cross- and intra-domain gaps in semantic segmentation. The proposed
framework is comprised of two mixing modules. First, we conduct a cross-domain
adaptation via an image-level mixing strategy, which learns to align the
distribution shift of features between the source data and target data. Second,
intra-domain adaptation is achieved using a separate student-teacher network
which is built to generate category-level data augmentation by mixing unlabeled
target data in a way that respects predicted object boundaries. We demonstrate
that the proposed approach outperforms state-of-the-art methods on two common
synthetic-to-real semantic segmentation benchmarks. An extensive ablation study
is provided to further validate the effectiveness of our approach.
Related papers
- Reducing Source-Private Bias in Extreme Universal Domain Adaptation [11.875619863954238]
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain.
We show that state-of-the-art methods struggle when the source domain has significantly more non-overlapping classes than overlapping ones.
We propose using self-supervised learning to preserve the structure of the target data.
arXiv Detail & Related papers (2024-10-15T04:51:37Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
We propose an Domain Informed Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance.
In our IDA model, the class-level performance is tracked by an expected confidence score (ECS) and we then use a dynamic schedule to determine the mixing ratio for data in different domains.
Our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to City
arXiv Detail & Related papers (2023-03-05T18:16:34Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
We introduce active sample selection to assist domain adaptation regarding the semantic segmentation task.
With only a little workload to manually annotate these samples, the distortion of the target-domain distribution can be effectively alleviated.
A powerful semi-supervised domain adaptation strategy is proposed to alleviate the long-tail distribution problem.
arXiv Detail & Related papers (2023-01-18T07:55:22Z) - ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with
Asymmetric Co-training [34.017031149886556]
Unsupervised domain adaptation (UDA) has been vastly explored to alleviate domain shifts between source and target domains.
We propose to exploit both labeled source and target domain data, in addition to unlabeled target data in a unified manner.
We present a novel asymmetric co-training (ACT) framework to integrate these subsets and avoid the domination of the source domain data.
arXiv Detail & Related papers (2022-06-05T23:48:00Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Unsupervised Domain Adaptation for Semantic Segmentation via Low-level
Edge Information Transfer [27.64947077788111]
Unsupervised domain adaptation for semantic segmentation aims to make models trained on synthetic data adapt to real images.
Previous feature-level adversarial learning methods only consider adapting models on the high-level semantic features.
We present the first attempt at explicitly using low-level edge information, which has a small inter-domain gap, to guide the transfer of semantic information.
arXiv Detail & Related papers (2021-09-18T11:51:31Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for
Semantic Segmentation [34.790169990156684]
We focus on a more practical setting of semi-supervised domain adaptation (SSDA) where both a small set of labeled target data and large amounts of labeled source data are available.
Two kinds of data mixing methods are proposed to reduce domain gap in both region-level and sample-level respectively.
We can obtain two complementary domain-mixed teachers based on dual-level mixed data from holistic and partial views respectively.
arXiv Detail & Related papers (2021-03-08T12:33:17Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.