論文の概要: A Domain Gap Aware Generative Adversarial Network for Multi-domain Image
Translation
- arxiv url: http://arxiv.org/abs/2110.10837v1
- Date: Thu, 21 Oct 2021 00:33:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-22 17:15:24.834018
- Title: A Domain Gap Aware Generative Adversarial Network for Multi-domain Image
Translation
- Title(参考訳): マルチドメイン画像翻訳のための生成逆ネットワークを考慮したドメインギャップ
- Authors: Wenju Xu and Guanghui Wang
- Abstract要約: 本稿では,複数の領域にまたがって画像の変換を行う統一モデルを提案する。
単一の統一ジェネレータにより、モデルはグローバルな形状と複数のドメインにわたる局所的なテクスチャ情報との整合性を維持することができる。
- 参考スコア(独自算出の注目度): 22.47113158859034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent image-to-image translation models have shown great success in mapping
local textures between two domains. Existing approaches rely on a
cycle-consistency constraint that supervises the generators to learn an inverse
mapping. However, learning the inverse mapping introduces extra trainable
parameters and it is unable to learn the inverse mapping for some domains. As a
result, they are ineffective in the scenarios where (i) multiple visual image
domains are involved; (ii) both structure and texture transformations are
required; and (iii) semantic consistency is preserved. To solve these
challenges, the paper proposes a unified model to translate images across
multiple domains with significant domain gaps. Unlike previous models that
constrain the generators with the ubiquitous cycle-consistency constraint to
achieve the content similarity, the proposed model employs a perceptual
self-regularization constraint. With a single unified generator, the model can
maintain consistency over the global shapes as well as the local texture
information across multiple domains. Extensive qualitative and quantitative
evaluations demonstrate the effectiveness and superior performance over
state-of-the-art models. It is more effective in representing shape deformation
in challenging mappings with significant dataset variation across multiple
domains.
- Abstract(参考訳): 最近の画像から画像への変換モデルは、2つのドメイン間の局所的なテクスチャのマッピングにおいて大きな成功を収めている。
既存のアプローチは、ジェネレータが逆写像を学ぶのを監督するサイクルコンシスタンス制約に依存している。
しかし、逆写像を学ぶことは余分な訓練可能なパラメータをもたらし、いくつかの領域の逆写像を学べない。
結果として、それらはシナリオにおいて効果がない。
i)複数の視覚画像領域が関与している。
(ii)構造とテクスチャの変換が必要である。
(iii)意味一貫性が保存される。
これらの課題を解決するため,本稿では,複数の領域にまたがる画像の翻訳モデルを提案する。
生成元をユビキタスなサイクル一貫性制約で制約する従来のモデルとは異なり、提案モデルは知覚的自己規則化制約を用いる。
単一の統一ジェネレータにより、モデルはグローバルな形状と複数のドメインにわたる局所的なテクスチャ情報の一貫性を維持することができる。
広範囲な質的定量的評価は最先端モデルの有効性と優れた性能を示している。
複数の領域にまたがる大きなデータセット変動を伴う挑戦的なマッピングにおいて、形状変形を表現するのがより効果的である。
関連論文リスト
- Semantic Segmentation for Real-World and Synthetic Vehicle's Forward-Facing Camera Images [0.8562182926816566]
これは、車両の前向きカメラからの実世界の画像と合成画像の両方におけるセマンティックセグメンテーション問題の解決策である。
我々は、さまざまな屋外状況の様々な領域でよく機能するロバストモデルの構築に集中する。
本稿では,意味的セグメンテーション問題における領域適応のための実世界のデータと合成データの併用の有効性について検討する。
論文 参考訳(メタデータ) (2024-07-07T17:28:45Z) - Self-supervised Domain-agnostic Domain Adaptation for Satellite Images [18.151134198549574]
このようなドメイン定義なしでドメイン適応を行うための自己教師付きドメイン非依存ドメイン適応(SS(DA)2)手法を提案する。
まず,2つの衛星画像パッチ間で画像と画像の変換を行うために,生成ネットワークのトレーニングを行う。
そして、異なる試験スペクトル特性でトレーニングデータを増強することにより、下流モデルの一般化性を向上させる。
論文 参考訳(メタデータ) (2023-09-20T07:37:23Z) - Domain-Scalable Unpaired Image Translation via Latent Space Anchoring [88.7642967393508]
Unpaired Image-to-image Translation (UNIT)は、2つの視覚領域間の画像をペアのトレーニングデータなしでマッピングすることを目的としている。
そこで本研究では、潜在空間アンカーと呼ばれる新しい領域スケーリング可能なUNIT手法を提案する。
本手法は, 軽量エンコーダと回帰器モデルを学習することにより, 異なる領域の画像を, 凍ったGANと同じ潜伏空間に固定する。
推論フェーズでは、異なるドメインの学習エンコーダとデコーダを任意に組み合わせて、微調整なしで任意の2つのドメイン間で画像を変換することができる。
論文 参考訳(メタデータ) (2023-06-26T17:50:02Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
超高解像度画像のセマンティックセグメンテーションのための新しい教師なし領域適応法を提案する。
潜在コンテンツ表現をドメイン間で混合するエンコーダ・デコーダの原理に基づいて,画像から画像への変換パラダイムを提案する。
都市間比較実験により,提案手法は最先端領域適応法より優れていることが示された。
論文 参考訳(メタデータ) (2022-12-07T18:16:17Z) - Disentangled Unsupervised Image Translation via Restricted Information
Flow [61.44666983942965]
多くの最先端のメソッドは、所望の共有vs固有の分割をアーキテクチャにハードコードする。
帰納的アーキテクチャバイアスに依存しない新しい手法を提案する。
提案手法は,2つの合成データセットと1つの自然なデータセットに対して一貫した高い操作精度を実現する。
論文 参考訳(メタデータ) (2021-11-26T00:27:54Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Cross-Domain Latent Modulation for Variational Transfer Learning [1.9212368803706577]
分散オートエンコーダ(VAE)フレームワーク内のクロスドメイン潜時変調機構を提案し,トランスファー学習の改善を実現する。
提案モデルは,教師なし領域適応や画像から画像への変換など,多くのトランスファー学習タスクに適用する。
論文 参考訳(メタデータ) (2020-12-21T22:45:00Z) - Continuous and Diverse Image-to-Image Translation via Signed Attribute
Vectors [120.13149176992896]
本稿では,様々な領域にまたがる多様な写像経路の連続的な変換を可能にする,効果的に署名された属性ベクトルを提案する。
連続翻訳結果の視覚的品質を高めるため、2つの符号対称属性ベクトル間の軌跡を生成する。
論文 参考訳(メタデータ) (2020-11-02T18:59:03Z) - Image-to-image Mapping with Many Domains by Sparse Attribute Transfer [71.28847881318013]
教師なし画像と画像の変換は、2つの領域間の一対のマッピングを、ポイント間の既知のペアワイズ対応なしで学習することで構成される。
現在の慣例は、サイクル一貫性のあるGANでこのタスクにアプローチすることです。
そこで本研究では,ジェネレータを直接,潜在層における単純なスパース変換に制限する代替手法を提案する。
論文 参考訳(メタデータ) (2020-06-23T19:52:23Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
教師なしのドメイン適応アルゴリズムは、あるドメインから学んだ知識を別のドメインに転送することを目的としている。
本稿では,新しい画素単位の対向領域適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-09T19:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。