Multi-label Classification with Partial Annotations using Class-aware
Selective Loss
- URL: http://arxiv.org/abs/2110.10955v1
- Date: Thu, 21 Oct 2021 08:10:55 GMT
- Title: Multi-label Classification with Partial Annotations using Class-aware
Selective Loss
- Authors: Emanuel Ben-Baruch, Tal Ridnik, Itamar Friedman, Avi Ben-Cohen, Nadav
Zamir, Asaf Noy, Lihi Zelnik-Manor
- Abstract summary: Large-scale multi-label classification datasets are commonly partially annotated.
We analyze the partial labeling problem, then propose a solution based on two key ideas.
With our novel approach, we achieve state-of-the-art results on OpenImages dataset.
- Score: 14.3159150577502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale multi-label classification datasets are commonly, and perhaps
inevitably, partially annotated. That is, only a small subset of labels are
annotated per sample. Different methods for handling the missing labels induce
different properties on the model and impact its accuracy. In this work, we
analyze the partial labeling problem, then propose a solution based on two key
ideas. First, un-annotated labels should be treated selectively according to
two probability quantities: the class distribution in the overall dataset and
the specific label likelihood for a given data sample. We propose to estimate
the class distribution using a dedicated temporary model, and we show its
improved efficiency over a naive estimation computed using the dataset's
partial annotations. Second, during the training of the target model, we
emphasize the contribution of annotated labels over originally un-annotated
labels by using a dedicated asymmetric loss. With our novel approach, we
achieve state-of-the-art results on OpenImages dataset (e.g. reaching 87.3 mAP
on V6). In addition, experiments conducted on LVIS and simulated-COCO
demonstrate the effectiveness of our approach. Code is available at
https://github.com/Alibaba-MIIL/PartialLabelingCSL.
Related papers
- Deep Active Learning with Manifold-preserving Trajectory Sampling [2.0717982775472206]
Active learning (AL) is for optimizing the selection of unlabeled data for annotation (labeling)
Existing deep AL methods arguably suffer from bias incurred by clabeled data, which takes a much lower percentage than unlabeled data in AL context.
We propose a novel method, namely Manifold-Preserving Trajectory Sampling (MPTS), aiming to enforce the feature space learned from labeled data to represent a more accurate manifold.
arXiv Detail & Related papers (2024-10-21T03:04:09Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Substituting Data Annotation with Balanced Updates and Collective Loss
in Multi-label Text Classification [19.592985329023733]
Multi-label text classification (MLTC) is the task of assigning multiple labels to a given text.
We study the MLTC problem in annotation-free and scarce-annotation settings in which the magnitude of available supervision signals is linear to the number of labels.
Our method follows three steps, (1) mapping input text into a set of preliminary label likelihoods by natural language inference using a pre-trained language model, (2) calculating a signed label dependency graph by label descriptions, and (3) updating the preliminary label likelihoods with message passing along the label dependency graph.
arXiv Detail & Related papers (2023-09-24T04:12:52Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
We study how false negative labels affect the model's explanation.
We propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels.
arXiv Detail & Related papers (2023-04-04T14:00:59Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - SparseDet: Improving Sparsely Annotated Object Detection with
Pseudo-positive Mining [76.95808270536318]
We propose an end-to-end system that learns to separate proposals into labeled and unlabeled regions using Pseudo-positive mining.
While the labeled regions are processed as usual, self-supervised learning is used to process the unlabeled regions.
We conduct exhaustive experiments on five splits on the PASCAL-VOC and COCO datasets achieving state-of-the-art performance.
arXiv Detail & Related papers (2022-01-12T18:57:04Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z) - Learning with Noisy Labels by Targeted Relabeling [52.0329205268734]
Crowdsourcing platforms are often used to collect datasets for training deep neural networks.
We propose an approach which reserves a fraction of annotations to explicitly relabel highly probable labeling errors.
arXiv Detail & Related papers (2021-10-15T20:37:29Z) - Multi-Label Text Classification using Attention-based Graph Neural
Network [0.0]
A graph attention network-based model is proposed to capture the attentive dependency structure among the labels.
The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
arXiv Detail & Related papers (2020-03-22T17:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.