Detection of Driver Drowsiness by Calculating the Speed of Eye Blinking
- URL: http://arxiv.org/abs/2110.11223v1
- Date: Thu, 21 Oct 2021 16:02:05 GMT
- Title: Detection of Driver Drowsiness by Calculating the Speed of Eye Blinking
- Authors: Muhammad Fawwaz Yusri, Patrick Mangat, Oliver Wasenm\"uller
- Abstract summary: We consider a simple real-time detection system for drowsiness based on the eye blinking rate.
If the speed of the eye blinking drops below some empirically determined threshold, the system triggers an alarm.
We find that this system works well if the face is directed to the camera, but it becomes less reliable once the head is tilted significantly.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many road accidents are caused by drowsiness of the driver. While there are
methods to detect closed eyes, it is a non-trivial task to detect the gradual
process of a driver becoming drowsy. We consider a simple real-time detection
system for drowsiness merely based on the eye blinking rate derived from the
eye aspect ratio. For the eye detection we use HOG and a linear SVM. If the
speed of the eye blinking drops below some empirically determined threshold,
the system triggers an alarm, hence preventing the driver from falling into
microsleep. In this paper, we extensively evaluate the minimal requirements for
the proposed system. We find that this system works well if the face is
directed to the camera, but it becomes less reliable once the head is tilted
significantly. The results of our evaluations provide the foundation for
further developments of our drowsiness detection system.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Detecting Driver Fatigue With Eye Blink Behavior [0.0]
Traffic accidents cause millions of deaths and billions of dollars in economic losses each year globally.
Various studies have focused on detecting drivers' sleep/wake states using camera-based solutions.
In this study, besides the eye blink frequency, a driver adaptive eye blink behavior feature set have been evaluated to detect the fatigue status.
arXiv Detail & Related papers (2024-07-02T12:41:51Z) - Driver Drowsiness Detection System: An Approach By Machine Learning
Application [0.0]
A million people worldwide die each year due to traffic accident injuries.
drowsiness becomes the main principle for to increase in the number of road accidents.
This paper focus to resolve the problem of drowsiness detection with an accuracy of 80%.
arXiv Detail & Related papers (2023-03-11T05:05:36Z) - Near-infrared and visible-light periocular recognition with Gabor
features using frequency-adaptive automatic eye detection [69.35569554213679]
Periocular recognition has gained attention recently due to demands of increased robustness of face or iris in less controlled scenarios.
We present a new system for eye detection based on complex symmetry filters, which has the advantage of not needing training.
This system is used as input to a periocular algorithm based on retinotopic sampling grids and Gabor spectrum decomposition.
arXiv Detail & Related papers (2022-11-10T13:04:03Z) - SleepyWheels: An Ensemble Model for Drowsiness Detection leading to
Accident Prevention [0.0]
SleepyWheels is a revolutionary method that uses a lightweight neural network in conjunction with facial landmark identification.
The model is trained on a specially created dataset on driver sleepiness and it achieves an accuracy of 97 percent.
arXiv Detail & Related papers (2022-11-01T19:36:47Z) - Modelling and Detection of Driver's Fatigue using Ontology [60.090278944561184]
Road accidents are the eight leading cause of death all over the world.
Various factors cause driver's fatigue.
Ontological knowledge and rules for driver fatigue detection are to be integrated into an intelligent system.
arXiv Detail & Related papers (2022-08-31T08:42:28Z) - Drivers' attention detection: a systematic literature review [62.997667081978825]
Many factors can contribute to distractions while driving, since objects or events to physiological conditions, as drowsiness and fatigue, do not allow the driver to stay attentive.
The technological progress allowed the development and application of many solutions to detect the attention in real situations.
Our work presents a Systematic Literature Review of the methods and criteria used to detect attention of drivers at the wheel.
arXiv Detail & Related papers (2022-04-06T11:36:40Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
cataract is a common eye disease and one of the leading causes of blindness and vision impairment.
We present a novel algorithm for cataract detection using near-infrared eye images.
Deep learning-based eye segmentation and multitask network classification networks are presented.
arXiv Detail & Related papers (2021-10-06T08:10:28Z) - In-the-wild Drowsiness Detection from Facial Expressions [6.569756709977793]
Driving in a state of drowsiness is a major cause of road accidents, resulting in tremendous damage to life and property.
We propose a data collection protocol that involves outfitting vehicles of overnight shift workers with camera kits that record their faces while driving.
We experiment with different convolutional and temporal neural network architectures to predict drowsiness states from pose, expression and emotion-based representation of the input video of the driver's face.
arXiv Detail & Related papers (2020-10-21T17:28:56Z) - Towards Evaluating Driver Fatigue with Robust Deep Learning Models [0.0]
Drowsy driving results in approximately 72,000 crashes and 44,000 injuries every year in the US.
We propose a framework to detect eye closedness in a captured camera frame as a gateway for detecting drowsiness.
arXiv Detail & Related papers (2020-07-16T16:44:49Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.