Uncertainty Estimation for 3D Object Detection via Evidential Learning
- URL: http://arxiv.org/abs/2410.23910v1
- Date: Thu, 31 Oct 2024 13:13:32 GMT
- Title: Uncertainty Estimation for 3D Object Detection via Evidential Learning
- Authors: Nikita Durasov, Rafid Mahmood, Jiwoong Choi, Marc T. Law, James Lucas, Pascal Fua, Jose M. Alvarez,
- Abstract summary: We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
- Score: 63.61283174146648
- License:
- Abstract: 3D object detection is an essential task for computer vision applications in autonomous vehicles and robotics. However, models often struggle to quantify detection reliability, leading to poor performance on unfamiliar scenes. We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector. These uncertainty estimates require minimal computational overhead and are generalizable across different architectures. We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections; our framework consistently improves over baselines by 10-20% on average. Finally, we integrate this suite of tasks into a system where a 3D object detector auto-labels driving scenes and our uncertainty estimates verify label correctness before the labels are used to train a second model. Here, our uncertainty-driven verification results in a 1% improvement in mAP and a 1-2% improvement in NDS.
Related papers
- CatFree3D: Category-agnostic 3D Object Detection with Diffusion [63.75470913278591]
We introduce a novel pipeline that decouples 3D detection from 2D detection and depth prediction.
We also introduce the Normalised Hungarian Distance (NHD) metric for an accurate evaluation of 3D detection results.
arXiv Detail & Related papers (2024-08-22T22:05:57Z) - Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3D is a pioneering effort to benchmark and scrutinize the reliability of 3D scene understanding models.
We evaluate 28 state-of-the-art models across 10 diverse 3D datasets.
We introduce DeptS, a novel depth-aware scaling approach aimed at enhancing 3D model calibration.
arXiv Detail & Related papers (2024-03-25T17:59:59Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
We introduce a novel introspection solution for 2D object detection based on Deep Neural Networks (DNNs)
We implement several state-of-the-art (SOTA) introspection mechanisms for error detection in 2D object detection, using one-stage and two-stage object detectors evaluated on KITTI and BDD datasets.
Our performance evaluation shows that the proposed introspection solution outperforms SOTA methods, achieving an absolute reduction in the missed error ratio of 9% to 17% in the BDD dataset.
arXiv Detail & Related papers (2024-03-02T10:56:14Z) - Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook [19.539295469044813]
This study emphasizes the importance of robustness, alongside accuracy and latency, in evaluating perception systems under practical scenarios.
Our work presents an extensive survey of camera-only, LiDAR-only, and multi-modal 3D object detection algorithms, thoroughly evaluating their trade-off between accuracy, latency, and robustness.
Among these, multi-modal 3D detection approaches exhibit superior robustness, and a novel taxonomy is introduced to reorganize the literature for enhanced clarity.
arXiv Detail & Related papers (2024-01-12T12:35:45Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
Uncertainty helps us tackle the error in the perception system and improve robustness.
We propose a method for improving target tracking performance by adding uncertainty regression to the SECOND detector.
arXiv Detail & Related papers (2020-11-04T21:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.