Super-resolution of multiphase materials by combining complementary 2D
and 3D image data using generative adversarial networks
- URL: http://arxiv.org/abs/2110.11281v2
- Date: Fri, 22 Oct 2021 06:51:45 GMT
- Title: Super-resolution of multiphase materials by combining complementary 2D
and 3D image data using generative adversarial networks
- Authors: Amir Dahari, Steve Kench, Isaac Squires, Samuel J. Cooper
- Abstract summary: We present a method for combining information from pairs of distinct but complementary imaging techniques.
Specifically, we use deep convolutional generative adversarial networks to implement super-resolution, style transfer and dimensionality expansion.
Having confidence in the accuracy of our method, we then demonstrate its power by applying to a real data pair from a lithium ion battery electrode.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modelling the impact of a material's mesostructure on device level
performance typically requires access to 3D image data containing all the
relevant information to define the geometry of the simulation domain. This
image data must include sufficient contrast between phases to distinguish each
material, be of high enough resolution to capture the key details, but also
have a large enough field-of-view to be representative of the material in
general. It is rarely possible to obtain data with all of these properties from
a single imaging technique. In this paper, we present a method for combining
information from pairs of distinct but complementary imaging techniques in
order to accurately reconstruct the desired multi-phase, high resolution,
representative, 3D images. Specifically, we use deep convolutional generative
adversarial networks to implement super-resolution, style transfer and
dimensionality expansion. To demonstrate the widespread applicability of this
tool, two pairs of datasets are used to validate the quality of the volumes
generated by fusing the information from paired imaging techniques. Three key
mesostructural metrics are calculated in each case to show the accuracy of this
method. Having confidence in the accuracy of our method, we then demonstrate
its power by applying to a real data pair from a lithium ion battery electrode,
where the required 3D high resolution image data is not available anywhere in
the literature. We believe this approach is superior to previously reported
statistical material reconstruction methods both in terms of its fidelity and
ease of use. Furthermore, much of the data required to train this algorithm
already exists in the literature, waiting to be combined. As such, our
open-access code could precipitate a step change by generating the hard to
obtain high quality image volumes necessary to simulate behaviour at the
mesoscale.
Related papers
- Grounded Compositional and Diverse Text-to-3D with Pretrained Multi-View Diffusion Model [65.58911408026748]
We propose Grounded-Dreamer to generate 3D assets that can accurately follow complex, compositional text prompts.
We first advocate leveraging text-guided 4-view images as the bottleneck in the text-to-3D pipeline.
We then introduce an attention refocusing mechanism to encourage text-aligned 4-view image generation.
arXiv Detail & Related papers (2024-04-28T04:05:10Z) - Cross-domain and Cross-dimension Learning for Image-to-Graph
Transformers [50.576354045312115]
Direct image-to-graph transformation is a challenging task that solves object detection and relationship prediction in a single model.
We introduce a set of methods enabling cross-domain and cross-dimension transfer learning for image-to-graph transformers.
We demonstrate our method's utility in cross-domain and cross-dimension experiments, where we pretrain our models on 2D satellite images before applying them to vastly different target domains in 2D and 3D.
arXiv Detail & Related papers (2024-03-11T10:48:56Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - Multi-Projection Fusion and Refinement Network for Salient Object
Detection in 360{\deg} Omnidirectional Image [141.10227079090419]
We propose a Multi-Projection Fusion and Refinement Network (MPFR-Net) to detect the salient objects in 360deg omnidirectional image.
MPFR-Net uses the equirectangular projection image and four corresponding cube-unfolding images as inputs.
Experimental results on two omnidirectional datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-12-23T14:50:40Z) - Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object
Detection [16.198358858773258]
Multi-modal 3D object detection has been an active research topic in autonomous driving.
It is non-trivial to explore the cross-modal feature fusion between sparse 3D points and dense 2D pixels.
Recent approaches either fuse the image features with the point cloud features that are projected onto the 2D image plane or combine the sparse point cloud with dense image pixels.
arXiv Detail & Related papers (2022-10-18T06:15:56Z) - End-to-End Multi-View Structure-from-Motion with Hypercorrelation
Volumes [7.99536002595393]
Deep learning techniques have been proposed to tackle this problem.
We improve on the state-of-the-art two-view structure-from-motion(SfM) approach.
We extend it to the general multi-view case and evaluate it on the complex benchmark dataset DTU.
arXiv Detail & Related papers (2022-09-14T20:58:44Z) - Multimodal Masked Autoencoders Learn Transferable Representations [127.35955819874063]
We propose a simple and scalable network architecture, the Multimodal Masked Autoencoder (M3AE)
M3AE learns a unified encoder for both vision and language data via masked token prediction.
We provide an empirical study of M3AE trained on a large-scale image-text dataset, and find that M3AE is able to learn generalizable representations that transfer well to downstream tasks.
arXiv Detail & Related papers (2022-05-27T19:09:42Z) - 3D fluorescence microscopy data synthesis for segmentation and
benchmarking [0.9922927990501083]
Conditional generative adversarial networks can be utilized to generate realistic image data for 3D fluorescence microscopy.
An additional positional conditioning of the cellular structures enables the reconstruction of position-dependent intensity characteristics.
A patch-wise working principle and a subsequent full-size reassemble strategy is used to generate image data of arbitrary size and different organisms.
arXiv Detail & Related papers (2021-07-21T16:08:56Z) - Generating 3D structures from a 2D slice with GAN-based dimensionality
expansion [0.0]
Generative adversarial networks (GANs) can be trained to generate 3D image data, which is useful for design optimisation.
We introduce a generative adversarial network architecture, SliceGAN, which is able to synthesise high fidelity 3D datasets using a single representative 2D image.
arXiv Detail & Related papers (2021-02-10T18:46:17Z) - Object Detection on Single Monocular Images through Canonical
Correlation Analysis [3.4722706398428493]
We retrieve 3-D object information from single monocular images without using extra 3-D data like points cloud or depth images.
We propose a two-dimensional CCA framework to fuse monocular images and corresponding predicted depth images for basic computer vision tasks.
arXiv Detail & Related papers (2020-02-13T05:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.