A Generative Approach to High Fidelity 3D Reconstruction from Text Data
- URL: http://arxiv.org/abs/2503.03664v1
- Date: Wed, 05 Mar 2025 16:54:15 GMT
- Title: A Generative Approach to High Fidelity 3D Reconstruction from Text Data
- Authors: Venkat Kumar R, Deepak Saravanan,
- Abstract summary: This research proposes a fully automated pipeline that seamlessly integrates text-to-image generation, various image processing techniques, and deep learning methods for reflection removal and 3D reconstruction.<n>By leveraging state-of-the-art generative models like Stable Diffusion, the methodology translates natural language inputs into detailed 3D models through a multi-stage workflow.<n>This approach addresses key challenges in generative reconstruction, such as maintaining semantic coherence, managing geometric complexity, and preserving detailed visual information.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The convergence of generative artificial intelligence and advanced computer vision technologies introduces a groundbreaking approach to transforming textual descriptions into three-dimensional representations. This research proposes a fully automated pipeline that seamlessly integrates text-to-image generation, various image processing techniques, and deep learning methods for reflection removal and 3D reconstruction. By leveraging state-of-the-art generative models like Stable Diffusion, the methodology translates natural language inputs into detailed 3D models through a multi-stage workflow. The reconstruction process begins with the generation of high-quality images from textual prompts, followed by enhancement by a reinforcement learning agent and reflection removal using the Stable Delight model. Advanced image upscaling and background removal techniques are then applied to further enhance visual fidelity. These refined two-dimensional representations are subsequently transformed into volumetric 3D models using sophisticated machine learning algorithms, capturing intricate spatial relationships and geometric characteristics. This process achieves a highly structured and detailed output, ensuring that the final 3D models reflect both semantic accuracy and geometric precision. This approach addresses key challenges in generative reconstruction, such as maintaining semantic coherence, managing geometric complexity, and preserving detailed visual information. Comprehensive experimental evaluations will assess reconstruction quality, semantic accuracy, and geometric fidelity across diverse domains and varying levels of complexity. By demonstrating the potential of AI-driven 3D reconstruction techniques, this research offers significant implications for fields such as augmented reality (AR), virtual reality (VR), and digital content creation.
Related papers
- HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.
We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.
Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
We propose a novel approach for 3D mesh reconstruction from multi-view images.
Our method takes inspiration from large reconstruction models that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images.
arXiv Detail & Related papers (2024-06-09T05:19:24Z) - Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review [0.08823202672546056]
This review paper focuses on state-of-the-art techniques for 3D reconstruction, including the generation of novel, unseen views.
An overview of recent developments in the Gaussian Splatting method is provided, covering input types, model structures, output representations, and training strategies.
arXiv Detail & Related papers (2024-05-06T12:32:38Z) - Scalable Scene Modeling from Perspective Imaging: Physics-based Appearance and Geometry Inference [3.2229099973277076]
dissertation presents a fraction of contributions that advances 3D scene modeling to its state of the art.
In contrast to the prevailing deep learning methods, as a core contribution, this thesis aims to develop algorithms that follow first principles.
arXiv Detail & Related papers (2024-04-01T17:09:40Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - CVRecon: Rethinking 3D Geometric Feature Learning For Neural
Reconstruction [12.53249207602695]
We propose an end-to-end 3D neural reconstruction framework CVRecon.
We exploit the rich geometric embedding in the cost volumes to facilitate 3D geometric feature learning.
arXiv Detail & Related papers (2023-04-28T05:30:19Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - End-to-End Multi-View Structure-from-Motion with Hypercorrelation
Volumes [7.99536002595393]
Deep learning techniques have been proposed to tackle this problem.
We improve on the state-of-the-art two-view structure-from-motion(SfM) approach.
We extend it to the general multi-view case and evaluate it on the complex benchmark dataset DTU.
arXiv Detail & Related papers (2022-09-14T20:58:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.