Survival-oriented embeddings for improving accessibility to complex data
structures
- URL: http://arxiv.org/abs/2110.11303v1
- Date: Thu, 21 Oct 2021 17:38:08 GMT
- Title: Survival-oriented embeddings for improving accessibility to complex data
structures
- Authors: Tobias Weber, Michael Ingrisch, Matthias Fabritius, Bernd Bischl,
David R\"ugamer
- Abstract summary: We propose a hazard-regularized variational autoencoder that supports straightforward interpretation of deep neural architectures in the context of survival analysis.
We apply the proposed approach to abdominal CT scans of patients with liver tumors and their corresponding survival times.
- Score: 2.1847940931069605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning excels in the analysis of unstructured data and recent
advancements allow to extend these techniques to survival analysis. In the
context of clinical radiology, this enables, e.g., to relate unstructured
volumetric images to a risk score or a prognosis of life expectancy and support
clinical decision making. Medical applications are, however, associated with
high criticality and consequently, neither medical personnel nor patients do
usually accept black box models as reason or basis for decisions. Apart from
averseness to new technologies, this is due to missing interpretability,
transparency and accountability of many machine learning methods. We propose a
hazard-regularized variational autoencoder that supports straightforward
interpretation of deep neural architectures in the context of survival
analysis, a field highly relevant in healthcare. We apply the proposed approach
to abdominal CT scans of patients with liver tumors and their corresponding
survival times.
Related papers
- Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
We have developed an explainable AI methodology tailored for medical imaging.
We employ a Convolutional Neural Network (CNN) that analyzes MRI scans across both image and frequency domains.
This approach not only enhances early training efficiency but also deepens our understanding of how additional features impact the model predictions.
arXiv Detail & Related papers (2024-09-20T15:43:26Z) - Bayesian Kolmogorov Arnold Networks (Bayesian_KANs): A Probabilistic Approach to Enhance Accuracy and Interpretability [1.90365714903665]
This study presents a novel framework called Bayesian Kolmogorov Arnold Networks (BKANs)
BKANs combines the expressive capacity of Kolmogorov Arnold Networks with Bayesian inference.
Our method provides useful insights into prediction confidence and decision boundaries and outperforms traditional deep learning models in terms of prediction accuracy.
arXiv Detail & Related papers (2024-08-05T10:38:34Z) - Large-scale cervical precancerous screening via AI-assisted cytology whole slide image analysis [11.148919818020495]
Cervical Cancer continues to be the leading gynecological malignancy, posing a persistent threat to women's health on a global scale.
Early screening via Whole Slide Image (WSI) diagnosis is critical to prevent this Cancer progression and improve survival rate.
But pathologist's single test suffers inevitable false negative due to the immense number of cells that need to be reviewed within a WSI.
arXiv Detail & Related papers (2024-07-28T15:29:07Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
Explainable artificial intelligence (XAI) plays an indispensable role in demystifying the decision-making processes of AI.
As they operate as "black boxes," with their reasoning obscured and inaccessible, there's an increased risk of misdiagnosis.
This shift towards transparency is not just beneficial -- it's a critical step towards responsible AI integration in healthcare.
arXiv Detail & Related papers (2024-03-23T02:15:23Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
The Intensive Care Unit (ICU) is one of the most important parts of a hospital, which admits critically ill patients and provides continuous monitoring and treatment.
Various patient outcome prediction methods have been attempted to assist healthcare professionals in clinical decision-making.
arXiv Detail & Related papers (2023-08-24T05:26:56Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.