Analyzing the Effect of $k$-Space Features in MRI Classification Models
- URL: http://arxiv.org/abs/2409.13589v1
- Date: Fri, 20 Sep 2024 15:43:26 GMT
- Title: Analyzing the Effect of $k$-Space Features in MRI Classification Models
- Authors: Pascal Passigan, Vayd Ramkumar,
- Abstract summary: We have developed an explainable AI methodology tailored for medical imaging.
We employ a Convolutional Neural Network (CNN) that analyzes MRI scans across both image and frequency domains.
This approach not only enhances early training efficiency but also deepens our understanding of how additional features impact the model predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The integration of Artificial Intelligence (AI) in medical diagnostics is often hindered by model opacity, where high-accuracy systems function as "black boxes" without transparent reasoning. This limitation is critical in clinical settings, where trust and reliability are paramount. To address this, we have developed an explainable AI methodology tailored for medical imaging. By employing a Convolutional Neural Network (CNN) that analyzes MRI scans across both image and frequency domains, we introduce a novel approach that incorporates Uniform Manifold Approximation and Projection UMAP] for the visualization of latent input embeddings. This approach not only enhances early training efficiency but also deepens our understanding of how additional features impact the model predictions, thereby increasing interpretability and supporting more accurate and intuitive diagnostic inferences
Related papers
- Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit.
We introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations.
SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations.
arXiv Detail & Related papers (2025-02-15T06:33:02Z) - Hybrid Interpretable Deep Learning Framework for Skin Cancer Diagnosis: Integrating Radial Basis Function Networks with Explainable AI [1.1049608786515839]
Skin cancer is one of the most prevalent and potentially life-threatening diseases worldwide.
We propose a novel hybrid deep learning framework that integrates convolutional neural networks (CNNs) with Radial Basis Function (RBF) Networks to achieve high classification accuracy and enhanced interpretability.
arXiv Detail & Related papers (2025-01-24T19:19:02Z) - Explainable Diagnosis Prediction through Neuro-Symbolic Integration [11.842565087408449]
We use neuro-symbolic methods, specifically Logical Neural Networks (LNNs), to develop explainable models for diagnosis prediction.
Our models, particularly $M_textmulti-pathway$ and $M_textcomprehensive$, demonstrate superior performance over traditional models.
These findings highlight the potential of neuro-symbolic approaches in bridging the gap between accuracy and explainability in healthcare AI applications.
arXiv Detail & Related papers (2024-10-01T22:47:24Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - ContrastDiagnosis: Enhancing Interpretability in Lung Nodule Diagnosis
Using Contrastive Learning [23.541034347602935]
Clinicians' distrust of black box models has hindered the clinical deployment of AI products.
We propose ContrastDiagnosis, a straightforward yet effective interpretable diagnosis framework.
High diagnostic accuracy was achieved with AUC of 0.977 while maintain a high transparency and explainability.
arXiv Detail & Related papers (2024-03-08T13:00:52Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - Towards Trustworthy Healthcare AI: Attention-Based Feature Learning for
COVID-19 Screening With Chest Radiography [70.37371604119826]
Building AI models with trustworthiness is important especially in regulated areas such as healthcare.
Previous work uses convolutional neural networks as the backbone architecture, which has shown to be prone to over-caution and overconfidence in making decisions.
We propose a feature learning approach using Vision Transformers, which use an attention-based mechanism.
arXiv Detail & Related papers (2022-07-19T14:55:42Z) - Improving Interpretability of Deep Neural Networks in Medical Diagnosis
by Investigating the Individual Units [24.761080054980713]
We demonstrate the efficiency of recent attribution techniques to explain the diagnostic decision by visualizing the significant factors in the input image.
Our analysis of unmasking machine intelligence represents the necessity of explainability in the medical diagnostic decision.
arXiv Detail & Related papers (2021-07-19T11:49:31Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
Existing CNN models act as black boxes, not ensuring to the physicians that important diagnostic features are used by the model.
Here we show that our architecture, by learning end-to-end an uncertainty-based weighting combination of multi-task and adversarial losses, is encouraged to focus on pathology features.
Our results on breast lymph node tissue show significantly improved generalization in the detection of tumorous tissue, with best average AUC 0.89 (0.01) against the baseline AUC 0.86 (0.005)
arXiv Detail & Related papers (2020-08-04T12:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.