Screening the Coulomb interaction leads to a prethermal regime in
two-dimensional bad conductors
- URL: http://arxiv.org/abs/2110.11473v2
- Date: Fri, 3 Nov 2023 19:37:28 GMT
- Title: Screening the Coulomb interaction leads to a prethermal regime in
two-dimensional bad conductors
- Authors: L. J. Stanley, Ping V. Lin, J. Jaroszy\'nski, Dragana Popovi\'c
- Abstract summary: Many-body localization (MBL) is a widely studied mechanism for thermalization to fail in strongly disordered quantum systems.
Here we observe MBL-like, prethermal dynamics for $alpha=3$ in strongly disordered $D=2$ electron systems.
Our results provide important insights for theory, especially since we obtained them on systems that are much closer to the thermodynamic limit than synthetic quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The absence of thermalization in certain isolated many-body systems is of
great fundamental interest. Many-body localization (MBL) is a widely studied
mechanism for thermalization to fail in strongly disordered quantum systems,
but it is still not understood precisely how the range of interactions affects
the dynamical behavior and the existence of MBL, especially in dimensions
$D>1$. By investigating nonequilibrium dynamics in strongly disordered $D=2$
electron systems with power-law interactions $\propto 1/r^{\alpha}$ and poor
coupling to a thermal bath, here we observe MBL-like, prethermal dynamics for
$\alpha=3$. In contrast, for $\alpha=1$, the system thermalizes, although the
dynamics is glassy. Our results provide important insights for theory,
especially since we obtained them on systems that are much closer to the
thermodynamic limit than synthetic quantum systems employed in previous studies
of MBL. Thus, our work is a key step towards further studies of ergodicity
breaking and quantum entanglement in real materials.
Related papers
- Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields [41.94295877935867]
We study the emergence of prethermal Floquet Time Crystal (pFTC) in disordered multiferroic chains.
We derive the phase diagram of the model, characterizing the magnetization, entanglement, and coherence dynamics of the system.
We also explore the application of the pFTC as quantum sensors of AC fields.
arXiv Detail & Related papers (2024-10-23T03:15:57Z) - Dynamical quasi-condensation in the weakly interacting Fermi-Hubbard
model [0.0]
We show that upon expansion of the system in one dimension, dynamical (quasi)-condensation occurs not only for large interactions via the condensation of doublons, but also for small interactions.
We use the two-particle reduced density matrix method, which allows the extension to large system sizes, long propagation times, and two-dimensional (2D) systems.
arXiv Detail & Related papers (2024-02-26T14:32:52Z) - Study on many-body phases in Jaynes-Cummings-Hubbard arrays [17.053538029057083]
Disorder in one-dimensional (1D) many-body systems emerges abundant phases such as many-body localization (MBL), and thermalization.
This work systematically reveals abundant many-body phases in the 1D JCH model and clarifies the discrepancies in the thermalization properties of systems with and without disorder.
arXiv Detail & Related papers (2023-08-23T07:52:29Z) - Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical
Intersections [66.33913750180542]
Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces.
We predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction.
In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10-9$ cm$3$/s.
arXiv Detail & Related papers (2023-04-15T14:43:21Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Heat transport in an optical lattice via Markovian feedback control [0.0]
We use Markovian feedback control to synthesize two effective thermal baths that couple to the boundaries of a one-dimensional Bose-Hubbard chain.
We investigate the steady-state heat current, including its scaling with system size and its response to disorder.
We provide a route for the quantum simulation of heat-current-carrying steady states of matter in atomic quantum gases.
arXiv Detail & Related papers (2022-07-27T16:35:24Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Long-lived quantum coherent dynamics of a $\Lambda$-system driven by a
thermal environment [0.0]
We present a theoretical study of quantum coherent dynamics of a three-level $Lambda$ system driven by a thermal environment.
Our results suggest that thermal excitations can generate experimentally observable long-lived quantum coherent dynamics in the ground-state subspace of atomic and molecular $Lambda$ systems.
arXiv Detail & Related papers (2021-08-17T06:24:34Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum transient heat transport in the hyper-parametric oscillator [0.0]
We explore nonequilibrium quantum heat transport in nonlinear bosonic systems in the presence of a non-Kerr-type interaction.
Our findings may help in the manipulation of quantum states using the system's interactions to induce cooling.
arXiv Detail & Related papers (2020-11-05T05:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.