論文の概要: MixNorm: Test-Time Adaptation Through Online Normalization Estimation
- arxiv url: http://arxiv.org/abs/2110.11478v1
- Date: Thu, 21 Oct 2021 21:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-25 14:32:02.925179
- Title: MixNorm: Test-Time Adaptation Through Online Normalization Estimation
- Title(参考訳): MixNorm: オンライン正規化推定によるテスト時間適応
- Authors: Xuefeng Hu, Gokhan Uzunbas, Sirius Chen, Rui Wang, Ashish Shah, Ram
Nevatia and Ser-Nam Lim
- Abstract要約: テスト期間中のバッチノーム統計を簡易かつ効果的に推定し、ソースモデルをテストサンプルのターゲットに迅速に適応させる方法を提案する。
テスト時間適応(Test-Time Adaptation)として知られるこのタスクの研究は、(1)テストサンプルが大きなバッチとして集まり、(2)テストの分布が1つであることを評価する上で、2つの前提に従っている。
- 参考スコア(独自算出の注目度): 35.65295482033232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a simple and effective way to estimate the batch-norm statistics
during test time, to fast adapt a source model to target test samples. Known as
Test-Time Adaptation, most prior works studying this task follow two
assumptions in their evaluation where (1) test samples come together as a large
batch, and (2) all from a single test distribution. However, in practice, these
two assumptions may not stand, the reasons for which we propose two new
evaluation settings where batch sizes are arbitrary and multiple distributions
are considered. Unlike the previous methods that require a large batch of
single distribution during test time to calculate stable batch-norm statistics,
our method avoid any dependency on large online batches and is able to estimate
accurate batch-norm statistics with a single sample. The proposed method
significantly outperforms the State-Of-The-Art in the newly proposed settings
in Test-Time Adaptation Task, and also demonstrates improvements in various
other settings such as Source-Free Unsupervised Domain Adaptation and Zero-Shot
Classification.
- Abstract(参考訳): テスト期間中のバッチノーム統計を簡易かつ効果的に推定し、ソースモデルをテストサンプルに迅速に適応させる方法を提案する。
テスト時間適応(Test-Time Adaptation)として知られるこのタスクの研究は、(1)テストサンプルが大きなバッチとして集まり、(2)テストの分布が1つであることを評価する上で、2つの前提に従っている。
しかし、実際にはこれら2つの仮定は成立しない可能性があり、バッチサイズが任意で複数の分布が考慮される2つの新しい評価設定を提案する。
安定なバッチノルム統計を計算するためにテスト時間中に単一分布の大規模なバッチを必要とする従来の方法とは異なり、本手法は大規模オンラインバッチへの依存を回避し、単一のサンプルで正確なバッチノルム統計を推定することができる。
提案手法は,新たに提案するテスト時適応タスクにおける最先端を著しく上回り,ソースフリーな非教師なしドメイン適応やゼロショット分類など,他の様々な設定における改善も示す。
関連論文リスト
- DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
トレーニングフリーテスト時動的アダプタ(TDA)は、この問題に対処するための有望なアプローチである。
単体テスト時間適応法(Dota)の簡易かつ効果的な方法を提案する。
Dotaは継続的にテストサンプルの分布を推定し、モデルがデプロイメント環境に継続的に適応できるようにします。
論文 参考訳(メタデータ) (2024-09-28T15:03:28Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - Unraveling Batch Normalization for Realistic Test-Time Adaptation [22.126177142716188]
本稿では,ミニバッチ劣化問題について考察する。
バッチ正規化を解き放つことにより、不正確なターゲット統計は、バッチのクラス多様性が大幅に減少することに起因することが判明した。
テスト時間指数移動平均(TEMA)という簡単なツールを導入し、トレーニングとテストバッチ間のクラス多様性のギャップを埋める。
論文 参考訳(メタデータ) (2023-12-15T01:52:35Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
TTA(Test-Time Adaptation)は、分散シフトの下で堅牢性に取り組むための有望なアプローチとして登場した。
TTABは,10の最先端アルゴリズム,多種多様な分散シフト,および2つの評価プロトコルを含むテスト時間適応ベンチマークである。
論文 参考訳(メタデータ) (2023-06-06T09:35:29Z) - Robust Test-Time Adaptation in Dynamic Scenarios [9.475271284789969]
テスト時適応(TTA)は、未ラベルのテストデータストリームのみを用いて、事前訓練されたモデルを分散をテストすることを目的としている。
PTTAの複雑なデータストリームに対してロバストテスト時間適応法(RoTTA)を精査する。
私たちのメソッドは実装が簡単で、迅速なデプロイメントに適しています。
論文 参考訳(メタデータ) (2023-03-24T10:19:14Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
テスト時間バッチ正規化(BN)や自己学習といった,一般的な適応手法では,2つの好ましくない欠陥が隠されていることがわかった。
まず、テスト時間BNにおける正規化統計は、現在受信されているテストサンプルに完全に影響され、その結果、不正確な推定結果が得られることを明らかにする。
第二に、テスト時間適応中にパラメータ更新が支配的なクラスに偏っていることを示す。
論文 参考訳(メタデータ) (2023-01-30T15:54:00Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
テストデータストリーム以外のデータストリームに対して堅牢な新しいテスト時間適応方式を提案する。
a)分布外サンプルの正規化を修正するIABN(Instance-Aware Batch Normalization)と、(b)クラスバランスのない方法で非i.d.ストリームからのデータストリームをシミュレートするPBRS(Predict- Balanced Reservoir Sampling)である。
論文 参考訳(メタデータ) (2022-08-10T03:05:46Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。