Quantum Entanglement in the One-Dimensional Anyonic Hubbard Model
- URL: http://arxiv.org/abs/2110.11673v2
- Date: Wed, 27 Oct 2021 13:30:59 GMT
- Title: Quantum Entanglement in the One-Dimensional Anyonic Hubbard Model
- Authors: Ramadas N, V V Sreedhar
- Abstract summary: Issues related to quantum entanglement in systems of indistinguishable particles are extended to anyonic statistics.
Local and non-local measurements discussed in this framework are carefully analysed in the two-site anyonic Hubbard model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Issues related to quantum entanglement in systems of indistinguishable
particles, as discussed in the information theoretic approach, are extended to
anyonic statistics. Local and non-local measurements discussed in this
framework are carefully analysed in the two-site anyonic Hubbard model which
provides a concrete case-study. The von Neumann entropy, the single-particle
density matrix, the pair correlation function, and the pseudo-momentum
distribution function are worked out paying special attention to the dependence
on the statistics parameter.
Related papers
- Exploring entanglement in finite-size quantum systems with degenerate ground state [0.0]
We develop an approach for characterizing non-local quantum correlations in spin systems with exactly or nearly degenerate ground states.
We generate a finite set of their random linear combinations with Haar measure, which guarantees that these combinations are uniformly distributed in the space spanned by the initial eigenstates.
We elaborate on the problem of estimating observables on the basis of the single-shot measurements of numerous degenerate eigenstates.
arXiv Detail & Related papers (2024-10-01T08:56:34Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Random-coefficient pure states, the density operator formalism and the
Zeh problem [3.067607520161916]
A Random-Coefficient Pure State is a state where the coefficients of its development in the chosen basis are random variables.
The Landau - Feynman use of rho is mobilized in a situation differing from both the von Neumann statistical mixture and the RCPS.
It is shown that the use of the higher-order moments of a well-chosen random variable helps solving a problem already identified by Zeh in 1970.
arXiv Detail & Related papers (2022-01-10T10:03:01Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Uncover quantumness in the crossover from BEC to quantum-correlated
phase [0.0]
We examine the role of the quantum entanglement of an assembly of two-level emitters coupled to a single-mode cavity.
This allows us to characterise the quantum correlated state for each regime.
arXiv Detail & Related papers (2021-01-18T05:06:59Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Non-Markovianity of Quantum Brownian Motion [0.0]
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion.
A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.
arXiv Detail & Related papers (2020-07-06T16:35:09Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Anyon Quantum Transport and Noise away from Equilibrium [0.0]
We investigate the quantum transport of anyons in one space dimension.
A non-equilibrium representation of the physical observables is constructed.
The dependence of the relative noise power on the statistical parameter is established.
arXiv Detail & Related papers (2020-05-27T12:33:09Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.