Exploring entanglement in finite-size quantum systems with degenerate ground state
- URL: http://arxiv.org/abs/2410.00515v1
- Date: Tue, 1 Oct 2024 08:56:34 GMT
- Title: Exploring entanglement in finite-size quantum systems with degenerate ground state
- Authors: V. S. Okatev, O. M. Sotnikov, V. V. Mazurenko,
- Abstract summary: We develop an approach for characterizing non-local quantum correlations in spin systems with exactly or nearly degenerate ground states.
We generate a finite set of their random linear combinations with Haar measure, which guarantees that these combinations are uniformly distributed in the space spanned by the initial eigenstates.
We elaborate on the problem of estimating observables on the basis of the single-shot measurements of numerous degenerate eigenstates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop an approach for characterizing non-local quantum correlations in spin systems with exactly or nearly degenerate ground states. Starting with linearly independent degenerate eigenfunctions calculated with exact diagonalization we generate a finite set of their random linear combinations with Haar measure, which guarantees that these combinations are uniformly distributed in the space spanned by the initial eigenstates. Estimating the von Neumann entropy of the random wave functions helps to reveal previously unknown features of the quantum correlations in the phases with degeneracy of the ground state. For instance, spin spiral phase of the quantum magnet with Dzyaloshinskii-Moriya interaction is characterized by the enhancement of the entanglement entropy, which can be qualitatively explained by the changes in behaviour of two- and three-spin correlation functions. To establish the connection between our theoretical findings and real experiments we elaborate on the problem of estimating observables on the basis of the single-shot measurements of numerous degenerate eigenstates.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Mechanisms for the emergence of Gaussian correlations [0.471876092032107]
We investigate two mechanisms leading to memory loss of non-Gaussian correlations after switching off the interactions in an isolated quantum system.
The first mechanism is based on spatial scrambling and results in the emergence of locally Gaussian steady states.
The second mechanism, characterized as canonical transmutation', is based on the mixing of a pair of canonically conjugate fields.
arXiv Detail & Related papers (2021-08-17T18:06:19Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Realising the Symmetry-Protected Haldane Phase in Fermi-Hubbard Ladders [0.0]
Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter.
Here, we realise such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator.
arXiv Detail & Related papers (2021-03-18T17:55:56Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.