ListReader: Extracting List-form Answers for Opinion Questions
- URL: http://arxiv.org/abs/2110.11692v1
- Date: Fri, 22 Oct 2021 10:33:08 GMT
- Title: ListReader: Extracting List-form Answers for Opinion Questions
- Authors: Peng Cui, Dongyao Hu, Le Hu
- Abstract summary: ListReader is a neural ex-tractive QA model for list-form answer.
In addition to learning the alignment between the question and content, we introduce a heterogeneous graph neural network.
Our model adopts a co-extraction setting that can extract either span- or sentence-level answers.
- Score: 18.50111430378249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question answering (QA) is a high-level ability of natural language
processing. Most extractive ma-chine reading comprehension models focus on
factoid questions (e.g., who, when, where) and restrict the output answer as a
short and continuous span in the original passage. However, in real-world
scenarios, many questions are non-factoid (e.g., how, why) and their answers
are organized in the list format that contains multiple non-contiguous spans.
Naturally, existing extractive models are by design unable to answer such
questions. To address this issue, this paper proposes ListReader, a neural
ex-tractive QA model for list-form answer. In addition to learning the
alignment between the question and content, we introduce a heterogeneous graph
neural network to explicitly capture the associations among candidate segments.
Moreover, our model adopts a co-extraction setting that can extract either
span- or sentence-level answers, allowing better applicability. Two large-scale
datasets of different languages are constructed to support this study.
Experimental results show that our model considerably outperforms various
strong baselines. Further discussions provide an intuitive understanding of how
our model works and where the performance gain comes from.
Related papers
- GSQA: An End-to-End Model for Generative Spoken Question Answering [54.418723701886115]
We introduce the first end-to-end Generative Spoken Question Answering (GSQA) model that empowers the system to engage in abstractive reasoning.
Our model surpasses the previous extractive model by 3% on extractive QA datasets.
Our GSQA model shows the potential to generalize to a broad spectrum of questions, thus further expanding the spoken question answering capabilities of abstractive QA.
arXiv Detail & Related papers (2023-12-15T13:33:18Z) - SEMQA: Semi-Extractive Multi-Source Question Answering [94.04430035121136]
We introduce a new QA task for answering multi-answer questions by summarizing multiple diverse sources in a semi-extractive fashion.
We create the first dataset of this kind, QuoteSum, with human-written semi-extractive answers to natural and generated questions.
arXiv Detail & Related papers (2023-11-08T18:46:32Z) - Adapting Pre-trained Generative Models for Extractive Question Answering [4.993041970406846]
We introduce a novel approach that uses the power of pre-trained generative models to address extractive QA tasks.
We demonstrate the superior performance of our proposed approach compared to existing state-of-the-art models.
arXiv Detail & Related papers (2023-11-06T09:01:02Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
This paper addresses the problem of generating questions from a given context and an answer, specifically focusing on questions that require multi-hop reasoning across an extended context.
We propose MultiFactor, a novel QG framework based on multi-level content planning. Specifically, MultiFactor includes two components: FA-model, which simultaneously selects key phrases and generates full answers, and Q-model which takes the generated full answer as an additional input to generate questions.
arXiv Detail & Related papers (2023-10-20T13:57:01Z) - Answering Ambiguous Questions via Iterative Prompting [84.3426020642704]
In open-domain question answering, due to the ambiguity of questions, multiple plausible answers may exist.
One approach is to directly predict all valid answers, but this can struggle with balancing relevance and diversity.
We present AmbigPrompt to address the imperfections of existing approaches to answering ambiguous questions.
arXiv Detail & Related papers (2023-07-08T04:32:17Z) - LIQUID: A Framework for List Question Answering Dataset Generation [17.86721740779611]
We propose LIQUID, an automated framework for generating list QA datasets from unlabeled corpora.
We first convert a passage from Wikipedia or PubMed into a summary and extract named entities from the summarized text as candidate answers.
We then create questions using an off-the-shelf question generator with the extracted entities and original passage.
Using our synthetic data, we significantly improve the performance of the previous best list QA models by exact-match F1 scores of 5.0 on MultiSpanQA, 1.9 on Quoref, and 2.8 averaged across three BioASQ benchmarks.
arXiv Detail & Related papers (2023-02-03T12:42:45Z) - VANiLLa : Verbalized Answers in Natural Language at Large Scale [2.9098477555578333]
This dataset consists of over 100k simple questions adapted from the CSQA and SimpleQuestionsWikidata datasets.
The answer sentences in this dataset are syntactically and semantically closer to the question than to the triple fact.
arXiv Detail & Related papers (2021-05-24T16:57:54Z) - Generative Context Pair Selection for Multi-hop Question Answering [60.74354009152721]
We propose a generative context selection model for multi-hop question answering.
Our proposed generative passage selection model has a better performance (4.9% higher than baseline) on adversarial held-out set.
arXiv Detail & Related papers (2021-04-18T07:00:48Z) - EfficientQA : a RoBERTa Based Phrase-Indexed Question-Answering System [0.0]
In this paper, we explore the possibility to transfer the natural language understanding of language models into dense vectors representing questions and answer candidates.
Our model achieves state-of-the-art results in Phrase-Indexed Question Answering (PIQA) beating the previous state-of-art by 1.3 points in exact-match and 1.4 points in f1-score.
arXiv Detail & Related papers (2021-01-06T17:46:05Z) - A Wrong Answer or a Wrong Question? An Intricate Relationship between
Question Reformulation and Answer Selection in Conversational Question
Answering [15.355557454305776]
We show that question rewriting (QR) of the conversational context allows to shed more light on this phenomenon.
We present the results of this analysis on the TREC CAsT and QuAC (CANARD) datasets.
arXiv Detail & Related papers (2020-10-13T06:29:51Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
We propose a framework for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models.
We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator.
arXiv Detail & Related papers (2020-09-01T23:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.