A Wrong Answer or a Wrong Question? An Intricate Relationship between
Question Reformulation and Answer Selection in Conversational Question
Answering
- URL: http://arxiv.org/abs/2010.06835v2
- Date: Thu, 3 Feb 2022 14:52:30 GMT
- Title: A Wrong Answer or a Wrong Question? An Intricate Relationship between
Question Reformulation and Answer Selection in Conversational Question
Answering
- Authors: Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu, Raviteja Anantha
- Abstract summary: We show that question rewriting (QR) of the conversational context allows to shed more light on this phenomenon.
We present the results of this analysis on the TREC CAsT and QuAC (CANARD) datasets.
- Score: 15.355557454305776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dependency between an adequate question formulation and correct answer
selection is a very intriguing but still underexplored area. In this paper, we
show that question rewriting (QR) of the conversational context allows to shed
more light on this phenomenon and also use it to evaluate robustness of
different answer selection approaches. We introduce a simple framework that
enables an automated analysis of the conversational question answering (QA)
performance using question rewrites, and present the results of this analysis
on the TREC CAsT and QuAC (CANARD) datasets. Our experiments uncover
sensitivity to question formulation of the popular state-of-the-art models for
reading comprehension and passage ranking. Our results demonstrate that the
reading comprehension model is insensitive to question formulation, while the
passage ranking changes dramatically with a little variation in the input
question. The benefit of QR is that it allows us to pinpoint and group such
cases automatically. We show how to use this methodology to verify whether QA
models are really learning the task or just finding shortcuts in the dataset,
and better understand the frequent types of error they make.
Related papers
- RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions [52.33835101586687]
Conversational AI agents use Retrieval Augmented Generation (RAG) to provide verifiable document-grounded responses to user inquiries.
This paper presents a novel synthetic data generation method to efficiently create a diverse set of context-grounded confusing questions from a given document corpus.
arXiv Detail & Related papers (2024-10-18T16:11:29Z) - On the Robustness of Question Rewriting Systems to Questions of Varying
Hardness [43.63930447922717]
We are interested in the robustness of a QR system to questions varying in rewriting hardness or difficulty.
We first propose a method to automatically classify questions into subsets of varying hardness, by measuring the discrepancy between a question and its rewrite.
To enhance the robustness of QR systems to questions of varying hardness, we propose a novel learning framework for QR that first trains a QR model independently on each subset of questions of a certain level of hardness, then combines these QR models as one joint model for inference.
arXiv Detail & Related papers (2023-11-12T11:09:30Z) - Answering Ambiguous Questions via Iterative Prompting [84.3426020642704]
In open-domain question answering, due to the ambiguity of questions, multiple plausible answers may exist.
One approach is to directly predict all valid answers, but this can struggle with balancing relevance and diversity.
We present AmbigPrompt to address the imperfections of existing approaches to answering ambiguous questions.
arXiv Detail & Related papers (2023-07-08T04:32:17Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering [26.997542897342164]
We propose a novel framework, CONVSR (CONVQA using Structured Representations) for capturing and generating intermediate representations as conversational cues.
We test our model on the QuAC and CANARD datasets and illustrate by experimental results that our proposed framework achieves a better F1 score than the standard question rewriting model.
arXiv Detail & Related papers (2023-04-14T13:42:32Z) - Conversational QA Dataset Generation with Answer Revision [2.5838973036257458]
We introduce a novel framework that extracts question-worthy phrases from a passage and then generates corresponding questions considering previous conversations.
Our framework revises the extracted answers after generating questions so that answers exactly match paired questions.
arXiv Detail & Related papers (2022-09-23T04:05:38Z) - GooAQ: Open Question Answering with Diverse Answer Types [63.06454855313667]
We present GooAQ, a large-scale dataset with a variety of answer types.
This dataset contains over 5 million questions and 3 million answers collected from Google.
arXiv Detail & Related papers (2021-04-18T05:40:39Z) - Effective FAQ Retrieval and Question Matching With Unsupervised
Knowledge Injection [10.82418428209551]
We propose a contextual language model for retrieving appropriate answers to frequently asked questions.
We also explore to capitalize on domain-specific topically-relevant relations between words in an unsupervised manner.
We evaluate variants of our approach on a publicly-available Chinese FAQ dataset, and further apply and contextualize it to a large-scale question-matching task.
arXiv Detail & Related papers (2020-10-27T05:03:34Z) - Match$^2$: A Matching over Matching Model for Similar Question
Identification [74.7142127303489]
Community Question Answering (CQA) has become a primary means for people to acquire knowledge, where people are free to ask questions or submit answers.
Similar question identification becomes a core task in CQA which aims to find a similar question from the archived repository whenever a new question is asked.
It has long been a challenge to properly measure the similarity between two questions due to the inherent variation of natural language, i.e., there could be different ways to ask a same question or different questions sharing similar expressions.
Traditional methods typically take a one-side usage, which leverages the answer as some expanded representation of the
arXiv Detail & Related papers (2020-06-21T05:59:34Z) - Do not let the history haunt you -- Mitigating Compounding Errors in
Conversational Question Answering [17.36904526340775]
We find that compounding errors occur when using previously predicted answers at test time.
We propose a sampling strategy that dynamically selects between target answers and model predictions during training.
arXiv Detail & Related papers (2020-05-12T13:29:38Z) - SQuINTing at VQA Models: Introspecting VQA Models with Sub-Questions [66.86887670416193]
We show that state-of-the-art VQA models have comparable performance in answering perception and reasoning questions, but suffer from consistency problems.
To address this shortcoming, we propose an approach called Sub-Question-aware Network Tuning (SQuINT)
We show that SQuINT improves model consistency by 5%, also marginally improving performance on the Reasoning questions in VQA, while also displaying better attention maps.
arXiv Detail & Related papers (2020-01-20T01:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.