ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking
Neural Networks
- URL: http://arxiv.org/abs/2110.12211v1
- Date: Sat, 23 Oct 2021 12:56:23 GMT
- Title: ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking
Neural Networks
- Authors: Yihan Lin, Wei Ding, Shaohua Qiang, Lei Deng, Guoqi Li
- Abstract summary: We propose a fast and effective algorithm termed Omnidirectional Discrete Gradient (ODG) to convert the popular computer vision dataset ILSVRC2012 into its event-stream (ES) version.
In this way, we propose ES-ImageNet, which is dozens of times larger than other neuromorphic classification datasets at present and completely generated by the software.
- Score: 12.136368750042688
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With event-driven algorithms, especially the spiking neural networks (SNNs),
achieving continuous improvement in neuromorphic vision processing, a more
challenging event-stream-dataset is urgently needed. However, it is well known
that creating an ES-dataset is a time-consuming and costly task with
neuromorphic cameras like dynamic vision sensors (DVS). In this work, we
propose a fast and effective algorithm termed Omnidirectional Discrete Gradient
(ODG) to convert the popular computer vision dataset ILSVRC2012 into its
event-stream (ES) version, generating about 1,300,000 frame-based images into
ES-samples in 1000 categories. In this way, we propose an ES-dataset called
ES-ImageNet, which is dozens of times larger than other neuromorphic
classification datasets at present and completely generated by the software.
The ODG algorithm implements an image motion to generate local value changes
with discrete gradient information in different directions, providing a
low-cost and high-speed way for converting frame-based images into event
streams, along with Edge-Integral to reconstruct the high-quality images from
event streams. Furthermore, we analyze the statistics of the ES-ImageNet in
multiple ways, and a performance benchmark of the dataset is also provided
using both famous deep neural network algorithms and spiking neural network
algorithms. We believe that this work shall provide a new large-scale benchmark
dataset for SNNs and neuromorphic vision.
Related papers
- Event-Stream Super Resolution using Sigma-Delta Neural Network [0.10923877073891444]
Event cameras present unique challenges due to their low resolution and sparse, asynchronous nature of the data they collect.
Current event super-resolution algorithms are not fully optimized for the distinct data structure produced by event cameras.
Research proposes a method that integrates binary spikes with Sigma Delta Neural Networks (SDNNs)
arXiv Detail & Related papers (2024-08-13T15:25:18Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Enhancing Small Object Encoding in Deep Neural Networks: Introducing
Fast&Focused-Net with Volume-wise Dot Product Layer [0.0]
We introduce Fast&Focused-Net, a novel deep neural network architecture tailored for encoding small objects into fixed-length feature vectors.
Fast&Focused-Net employs a series of our newly proposed layer, the Volume-wise Dot Product (VDP) layer, designed to address several inherent limitations of CNNs.
For small object classification tasks, our network outperformed state-of-the-art methods on datasets such as CIFAR-10, CIFAR-100, STL-10, SVHN-Cropped, and Fashion-MNIST.
In the context of larger image classification, when combined with a transformer encoder (ViT
arXiv Detail & Related papers (2024-01-18T09:31:25Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
We present a new training scheme that adds noise at multiple stages of an existing neural architecture while simultaneously learning to be robust to this added noise.
This architecture, which we call a Self-Denoising Neural Network (SDNN), can be applied easily to most modern convolutional neural architectures.
arXiv Detail & Related papers (2021-10-26T03:28:36Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.