A Closer Look at Few-Shot Video Classification: A New Baseline and
Benchmark
- URL: http://arxiv.org/abs/2110.12358v1
- Date: Sun, 24 Oct 2021 06:01:46 GMT
- Title: A Closer Look at Few-Shot Video Classification: A New Baseline and
Benchmark
- Authors: Zhenxi Zhu, Limin Wang, Sheng Guo, Gangshan Wu
- Abstract summary: We present an in-depth study on few-shot video classification by making three contributions.
First, we perform a consistent comparative study on the existing metric-based methods to figure out their limitations in representation learning.
Second, we discover that there is a high correlation between the novel action class and the ImageNet object class, which is problematic in the few-shot recognition setting.
Third, we present a new benchmark with more base data to facilitate future few-shot video classification without pre-training.
- Score: 33.86872697028233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The existing few-shot video classification methods often employ a
meta-learning paradigm by designing customized temporal alignment module for
similarity calculation. While significant progress has been made, these methods
fail to focus on learning effective representations, and heavily rely on the
ImageNet pre-training, which might be unreasonable for the few-shot recognition
setting due to semantics overlap. In this paper, we aim to present an in-depth
study on few-shot video classification by making three contributions. First, we
perform a consistent comparative study on the existing metric-based methods to
figure out their limitations in representation learning. Accordingly, we
propose a simple classifier-based baseline without any temporal alignment that
surprisingly outperforms the state-of-the-art meta-learning based methods.
Second, we discover that there is a high correlation between the novel action
class and the ImageNet object class, which is problematic in the few-shot
recognition setting. Our results show that the performance of training from
scratch drops significantly, which implies that the existing benchmarks cannot
provide enough base data. Finally, we present a new benchmark with more base
data to facilitate future few-shot video classification without pre-training.
The code will be made available at https://github.com/MCG-NJU/FSL-Video.
Related papers
- Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - A Simple Approach to Adversarial Robustness in Few-shot Image
Classification [20.889464448762176]
We show that a simple transfer-learning based approach can be used to train adversarially robust few-shot classifiers.
We also present a method for novel classification task based on calibrating the centroid of the few-shot category towards the base classes.
arXiv Detail & Related papers (2022-04-11T22:46:41Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
arXiv Detail & Related papers (2022-03-25T06:14:51Z) - Revisiting Deep Local Descriptor for Improved Few-Shot Classification [56.74552164206737]
We show how one can improve the quality of embeddings by leveraging textbfDense textbfClassification and textbfAttentive textbfPooling.
We suggest to pool feature maps by applying attentive pooling instead of the widely used global average pooling (GAP) to prepare embeddings for few-shot classification.
arXiv Detail & Related papers (2021-03-30T00:48:28Z) - Generalized Few-Shot Video Classification with Video Retrieval and
Feature Generation [132.82884193921535]
We argue that previous methods underestimate the importance of video feature learning and propose a two-stage approach.
We show that this simple baseline approach outperforms prior few-shot video classification methods by over 20 points on existing benchmarks.
We present two novel approaches that yield further improvement.
arXiv Detail & Related papers (2020-07-09T13:05:32Z) - Rethinking Few-Shot Image Classification: a Good Embedding Is All You
Need? [72.00712736992618]
We show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, outperforms state-of-the-art few-shot learning methods.
An additional boost can be achieved through the use of self-distillation.
We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms.
arXiv Detail & Related papers (2020-03-25T17:58:42Z) - Frustratingly Simple Few-Shot Object Detection [98.42824677627581]
We find that fine-tuning only the last layer of existing detectors on rare classes is crucial to the few-shot object detection task.
Such a simple approach outperforms the meta-learning methods by roughly 220 points on current benchmarks.
arXiv Detail & Related papers (2020-03-16T00:29:14Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
We explore a simple process: meta-learning over a whole-classification pre-trained model on its evaluation metric.
We observe this simple method achieves competitive performance to state-of-the-art methods on standard benchmarks.
arXiv Detail & Related papers (2020-03-09T20:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.