De Novo Molecular Generation with Stacked Adversarial Model
- URL: http://arxiv.org/abs/2110.12454v1
- Date: Sun, 24 Oct 2021 14:23:16 GMT
- Title: De Novo Molecular Generation with Stacked Adversarial Model
- Authors: Yuansan Liu, James Bailey
- Abstract summary: Conditional generative adversarial models have recently been proposed as promising approaches for de novo drug design.
We propose a new generative model which extends an existing adversarial autoencoder based model by stacking two models together.
Our stacked approach generates more valid molecules, as well as molecules that are more similar to known drugs.
- Score: 24.83456726428956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating novel drug molecules with desired biological properties is a time
consuming and complex task. Conditional generative adversarial models have
recently been proposed as promising approaches for de novo drug design. In this
paper, we propose a new generative model which extends an existing adversarial
autoencoder (AAE) based model by stacking two models together. Our stacked
approach generates more valid molecules, as well as molecules that are more
similar to known drugs. We break down this challenging task into two
sub-problems. A first stage model to learn primitive features from the
molecules and gene expression data. A second stage model then takes these
features to learn properties of the molecules and refine more valid molecules.
Experiments and comparison to baseline methods on the LINCS L1000 dataset
demonstrate that our proposed model has promising performance for molecular
generation.
Related papers
- Rethinking Molecular Design: Integrating Latent Variable and Auto-Regressive Models for Goal Directed Generation [0.6800113478497425]
We return to the simplest representation of molecules, and investigate overlooked limitations of classical generative approaches.
We propose a hybrid model in the form of a novel regularizer that leverages the strengths of both to improve validity, conditional generation, and style transfer of molecular sequences.
arXiv Detail & Related papers (2024-08-19T11:50:23Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - A novel molecule generative model of VAE combined with Transformer for unseen structure generation [0.0]
Transformer and VAE are widely used as powerful models, but they are rarely used in combination due to structural and performance mismatch.
This study proposes a model that combines these two models through structural and parameter optimization in handling diverse molecules.
The proposed model shows comparable performance to existing models in generating molecules, and showed by far superior performance in generating molecules with unseen structures.
arXiv Detail & Related papers (2024-02-19T08:46:04Z) - Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
Approach to Generating Molecules with Desirable Properties [33.2976176283611]
We present a novel approach to generating molecules with desirable properties, which expands the diffusion model framework with multiple innovative designs.
To get desirable molecular fragments, we develop a novel electronic effect based fragmentation method.
We show that the molecules generated by our proposed method have better validity, uniqueness, novelty, Fr'echet ChemNet Distance (FCD), QED, and PlogP than those generated by current SOTA models.
arXiv Detail & Related papers (2023-10-05T11:43:21Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Learning Latent Space Energy-Based Prior Model for Molecule Generation [59.875533935578375]
We learn latent space energy-based prior model with SMILES representation for molecule modeling.
Our method is able to generate molecules with validity and uniqueness competitive with state-of-the-art models.
arXiv Detail & Related papers (2020-10-19T09:34:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.