Shape and Reflectance Reconstruction in Uncontrolled Environments by
Differentiable Rendering
- URL: http://arxiv.org/abs/2110.12975v1
- Date: Mon, 25 Oct 2021 14:09:10 GMT
- Title: Shape and Reflectance Reconstruction in Uncontrolled Environments by
Differentiable Rendering
- Authors: Rui Li, Guangmin Zang, Miao Qi, Wolfgang Heidrich
- Abstract summary: We propose an efficient method to reconstruct the scene's 3D geometry and reflectance from multi-view photography using conventional hand-held cameras.
Our method also shows superior performance compared to state-of-the-art alternatives in novel view visually synthesis and quantitatively.
- Score: 27.41344744849205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simultaneous reconstruction of geometry and reflectance properties in
uncontrolled environments remains a challenging problem. In this paper, we
propose an efficient method to reconstruct the scene's 3D geometry and
reflectance from multi-view photography using conventional hand-held cameras.
Our method automatically builds a virtual scene in a differentiable rendering
system that roughly matches the real world's scene parameters, optimized by
minimizing photometric objectives alternatingly and stochastically. With the
optimal scene parameters evaluated, photo-realistic novel views for various
viewing angles and distances can then be generated by our approach. We present
the results of captured scenes with complex geometry and various reflection
types. Our method also shows superior performance compared to state-of-the-art
alternatives in novel view synthesis visually and quantitatively.
Related papers
- Incorporating dense metric depth into neural 3D representations for view synthesis and relighting [25.028859317188395]
In robotic applications, dense metric depth can often be measured directly using stereo and illumination can be controlled.
In this work we demonstrate a method to incorporate dense metric depth into the training of neural 3D representations.
We also discuss a multi-flash stereo camera system developed to capture the necessary data for our pipeline and show results on relighting and view synthesis.
arXiv Detail & Related papers (2024-09-04T20:21:13Z) - MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References [49.71130133080821]
MaRINeR is a refinement method that leverages information of a nearby mapping image to improve the rendering of a target viewpoint.
We show improved renderings in quantitative metrics and qualitative examples from both explicit and implicit scene representations.
arXiv Detail & Related papers (2024-07-18T17:50:03Z) - Holistic Inverse Rendering of Complex Facade via Aerial 3D Scanning [38.72679977945778]
We use multi-view aerial images to reconstruct the geometry, lighting, and material of facades using neural signed distance fields (SDFs)
The experiment demonstrates the superior quality of our method on facade holistic inverse rendering, novel view synthesis, and scene editing compared to state-of-the-art baselines.
arXiv Detail & Related papers (2023-11-20T15:03:56Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision.
We introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses.
Our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration.
arXiv Detail & Related papers (2022-11-22T03:10:46Z) - Neural Radiance Transfer Fields for Relightable Novel-view Synthesis
with Global Illumination [63.992213016011235]
We propose a method for scene relighting under novel views by learning a neural precomputed radiance transfer function.
Our method can be solely supervised on a set of real images of the scene under a single unknown lighting condition.
Results show that the recovered disentanglement of scene parameters improves significantly over the current state of the art.
arXiv Detail & Related papers (2022-07-27T16:07:48Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - Multi-view Gradient Consistency for SVBRDF Estimation of Complex Scenes
under Natural Illumination [6.282068591820945]
This paper presents a process for estimating the spatially varying surface reflectance of complex scenes observed under natural illumination.
An end-to-end process uses a model of the scene's geometry and several images capturing the scene's surfaces.
Experiments show that our technique produces realistic results for arbitrary outdoor scenes with complex geometry.
arXiv Detail & Related papers (2022-02-25T23:49:39Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - Neural Reflectance Fields for Appearance Acquisition [61.542001266380375]
We present Neural Reflectance Fields, a novel deep scene representation that encodes volume density, normal and reflectance properties at any 3D point in a scene.
We combine this representation with a physically-based differentiable ray marching framework that can render images from a neural reflectance field under any viewpoint and light.
arXiv Detail & Related papers (2020-08-09T22:04:36Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.