Holistic Inverse Rendering of Complex Facade via Aerial 3D Scanning
- URL: http://arxiv.org/abs/2311.11825v2
- Date: Mon, 8 Apr 2024 05:11:47 GMT
- Title: Holistic Inverse Rendering of Complex Facade via Aerial 3D Scanning
- Authors: Zixuan Xie, Rengan Xie, Rong Li, Kai Huang, Pengju Qiao, Jingsen Zhu, Xu Yin, Qi Ye, Wei Hua, Yuchi Huo, Hujun Bao,
- Abstract summary: We use multi-view aerial images to reconstruct the geometry, lighting, and material of facades using neural signed distance fields (SDFs)
The experiment demonstrates the superior quality of our method on facade holistic inverse rendering, novel view synthesis, and scene editing compared to state-of-the-art baselines.
- Score: 38.72679977945778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we use multi-view aerial images to reconstruct the geometry, lighting, and material of facades using neural signed distance fields (SDFs). Without the requirement of complex equipment, our method only takes simple RGB images captured by a drone as inputs to enable physically based and photorealistic novel-view rendering, relighting, and editing. However, a real-world facade usually has complex appearances ranging from diffuse rocks with subtle details to large-area glass windows with specular reflections, making it hard to attend to everything. As a result, previous methods can preserve the geometry details but fail to reconstruct smooth glass windows or verse vise. In order to address this challenge, we introduce three spatial- and semantic-adaptive optimization strategies, including a semantic regularization approach based on zero-shot segmentation techniques to improve material consistency, a frequency-aware geometry regularization to balance surface smoothness and details in different surfaces, and a visibility probe-based scheme to enable efficient modeling of the local lighting in large-scale outdoor environments. In addition, we capture a real-world facade aerial 3D scanning image set and corresponding point clouds for training and benchmarking. The experiment demonstrates the superior quality of our method on facade holistic inverse rendering, novel view synthesis, and scene editing compared to state-of-the-art baselines.
Related papers
- Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision.
We introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses.
Our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration.
arXiv Detail & Related papers (2022-11-22T03:10:46Z) - Learning-based Inverse Rendering of Complex Indoor Scenes with
Differentiable Monte Carlo Raytracing [27.96634370355241]
This work presents an end-to-end, learning-based inverse rendering framework incorporating differentiable Monte Carlo raytracing with importance sampling.
The framework takes a single image as input to jointly recover the underlying geometry, spatially-varying lighting, and photorealistic materials.
arXiv Detail & Related papers (2022-11-06T03:34:26Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - Shape and Reflectance Reconstruction in Uncontrolled Environments by
Differentiable Rendering [27.41344744849205]
We propose an efficient method to reconstruct the scene's 3D geometry and reflectance from multi-view photography using conventional hand-held cameras.
Our method also shows superior performance compared to state-of-the-art alternatives in novel view visually synthesis and quantitatively.
arXiv Detail & Related papers (2021-10-25T14:09:10Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z) - Through the Looking Glass: Neural 3D Reconstruction of Transparent
Shapes [75.63464905190061]
Complex light paths induced by refraction and reflection have prevented both traditional and deep multiview stereo from solving this problem.
We propose a physically-based network to recover 3D shape of transparent objects using a few images acquired with a mobile phone camera.
Our experiments show successful recovery of high-quality 3D geometry for complex transparent shapes using as few as 5-12 natural images.
arXiv Detail & Related papers (2020-04-22T23:51:30Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.