Logsig-RNN: a novel network for robust and efficient skeleton-based
action recognition
- URL: http://arxiv.org/abs/2110.13008v1
- Date: Mon, 25 Oct 2021 14:47:15 GMT
- Title: Logsig-RNN: a novel network for robust and efficient skeleton-based
action recognition
- Authors: Shujian Liao, Terry Lyons, Weixin Yang, Kevin Schlegel, Hao Ni
- Abstract summary: We propose a novel module, namely Logsig-RNN, which is the combination of the log-native layer and recurrent type neural networks (RNNs)
In particular, we achieve the state-of-the-art accuracy on Chalearn2013 gesture data by combining simple path transformation layers with the Logsig-RNN.
- Score: 3.775860173040509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper contributes to the challenge of skeleton-based human action
recognition in videos. The key step is to develop a generic network
architecture to extract discriminative features for the spatio-temporal
skeleton data. In this paper, we propose a novel module, namely Logsig-RNN,
which is the combination of the log-signature layer and recurrent type neural
networks (RNNs). The former one comes from the mathematically principled
technology of signatures and log-signatures as representations for streamed
data, which can manage high sample rate streams, non-uniform sampling and time
series of variable length. It serves as an enhancement of the recurrent layer,
which can be conveniently plugged into neural networks. Besides we propose two
path transformation layers to significantly reduce path dimension while
retaining the essential information fed into the Logsig-RNN module. Finally,
numerical results demonstrate that replacing the RNN module by the Logsig-RNN
module in SOTA networks consistently improves the performance on both Chalearn
gesture data and NTU RGB+D 120 action data in terms of accuracy and robustness.
In particular, we achieve the state-of-the-art accuracy on Chalearn2013 gesture
data by combining simple path transformation layers with the Logsig-RNN. Codes
are available at \url{https://github.com/steveliao93/GCN_LogsigRNN}.
Related papers
- Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
We present a $SigmaDelta$-low-pass RNN (lpRNN) for mapping rate-based RNNs to spiking neural networks (SNNs)
An adaptive spiking neuron model encodes signals using $SigmaDelta$-modulation and enables precise mapping.
We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi.
arXiv Detail & Related papers (2024-07-18T14:06:07Z) - Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
We build a parallel model to illuminate and understand the internal operation of neural networks.
We show how each layer of the RNN transforms the input distributions to increase detection accuracy.
At the same time we also discover a side effect acting to limit the improvement in accuracy.
arXiv Detail & Related papers (2024-04-17T12:22:54Z) - A temporally and spatially local spike-based backpropagation algorithm
to enable training in hardware [0.0]
Spiking Neural Networks (SNNs) have emerged as a hardware efficient architecture for classification tasks.
There have been several attempts to adopt the powerful backpropagation (BP) technique used in non-spiking artificial neural networks (ANNs)
arXiv Detail & Related papers (2022-07-20T08:57:53Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - A Temporal Neural Network Architecture for Online Learning [0.6091702876917281]
Temporal neural networks (TNNs) communicate and process information encoded as relative spike times.
A TNN architecture is proposed and, as a proof-of-concept, TNN operation is demonstrated within the larger context of online supervised classification.
arXiv Detail & Related papers (2020-11-27T17:15:29Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Exploring Pre-training with Alignments for RNN Transducer based
End-to-End Speech Recognition [39.497407288772386]
recurrent neural network transducer (RNN-T) architecture has become an emerging trend in end-to-end automatic speech recognition research.
In this work, we leverage external alignments to seed the RNN-T model.
Two different pre-training solutions are explored, referred to as encoder pre-training, and whole-network pre-training respectively.
arXiv Detail & Related papers (2020-05-01T19:00:57Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.