Multi-Task Meta-Learning Modification with Stochastic Approximation
- URL: http://arxiv.org/abs/2110.13188v1
- Date: Mon, 25 Oct 2021 18:11:49 GMT
- Title: Multi-Task Meta-Learning Modification with Stochastic Approximation
- Authors: Andrei Boiarov, Konstantin Khabarlak, Igor Yastrebov
- Abstract summary: A few-shot learning problem is one of the main benchmarks of meta-learning algorithms.
In this paper we investigate the modification of standard meta-learning pipeline that takes a multi-task approach during training.
The proposed method simultaneously utilizes information from several meta-training tasks in a common loss function.
Proper optimization of these weights can have a big influence on training of the entire model and might improve the quality on test time tasks.
- Score: 0.7734726150561089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-learning methods aim to build learning algorithms capable of quickly
adapting to new tasks in low-data regime. One of the main benchmarks of such an
algorithms is a few-shot learning problem. In this paper we investigate the
modification of standard meta-learning pipeline that takes a multi-task
approach during training. The proposed method simultaneously utilizes
information from several meta-training tasks in a common loss function. The
impact of each of these tasks in the loss function is controlled by the
corresponding weight. Proper optimization of these weights can have a big
influence on training of the entire model and might improve the quality on test
time tasks. In this work we propose and investigate the use of methods from the
family of simultaneous perturbation stochastic approximation (SPSA) approaches
for meta-train tasks weights optimization. We have also compared the proposed
algorithms with gradient-based methods and found that stochastic approximation
demonstrates the largest quality boost in test time. Proposed multi-task
modification can be applied to almost all methods that use meta-learning
pipeline. In this paper we study applications of this modification on
Prototypical Networks and Model-Agnostic Meta-Learning algorithms on CIFAR-FS,
FC100, tieredImageNet and miniImageNet few-shot learning benchmarks. During
these experiments, multi-task modification has demonstrated improvement over
original methods. The proposed SPSA-Tracking algorithm shows the largest
accuracy boost. Our code is available online.
Related papers
- Fast Adaptation with Kernel and Gradient based Meta Leaning [4.763682200721131]
We propose two algorithms to improve both the inner and outer loops of Model A Meta Learning (MAML)
Our first algorithm redefines the optimization problem in the function space to update the model using closed-form solutions.
In the outer loop, the second algorithm adjusts the learning of the meta-learner by assigning weights to the losses from each task of the inner loop.
arXiv Detail & Related papers (2024-11-01T07:05:03Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Learning to Learn with Indispensable Connections [6.040904021861969]
We propose a novel meta-learning method called Meta-LTH that includes indispensible (necessary) connections.
Our method improves the classification accuracy by approximately 2% (20-way 1-shot task setting) for omniglot dataset.
arXiv Detail & Related papers (2023-04-06T04:53:13Z) - Gradient-Based Meta-Learning Using Uncertainty to Weigh Loss for
Few-Shot Learning [5.691930884128995]
Model-Agnostic Meta-Learning (MAML) is one of the most successful meta-learning techniques for few-shot learning.
New method is proposed for task-specific learner adaptively learn to select parameters that minimize the loss of new tasks.
Method 1 generates weights by comparing meta-loss differences to improve the accuracy when there are few classes.
Method 2 introduces the homoscedastic uncertainty of each task to weigh multiple losses based on the original gradient descent.
arXiv Detail & Related papers (2022-08-17T08:11:51Z) - Dynamic Multi-Scale Loss Optimization for Object Detection [14.256807110937622]
We study the objective imbalance of multi-scale detector training.
We propose an Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the statistical variance.
We develop a novel Reinforcement Learning Optimization (RLO) to decide the weighting scheme probabilistically during training.
arXiv Detail & Related papers (2021-08-09T13:12:41Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Few-shot Sequence Learning with Transformers [79.87875859408955]
Few-shot algorithms aim at learning new tasks provided only a handful of training examples.
In this work we investigate few-shot learning in the setting where the data points are sequences of tokens.
We propose an efficient learning algorithm based on Transformers.
arXiv Detail & Related papers (2020-12-17T12:30:38Z) - Meta-Learning with Adaptive Hyperparameters [55.182841228303225]
We focus on a complementary factor in MAML framework, inner-loop optimization (or fast adaptation)
We propose a new weight update rule that greatly enhances the fast adaptation process.
arXiv Detail & Related papers (2020-10-31T08:05:34Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.