SWAP Test for an Arbitrary Number of Quantum States
- URL: http://arxiv.org/abs/2110.13261v1
- Date: Mon, 25 Oct 2021 20:53:44 GMT
- Title: SWAP Test for an Arbitrary Number of Quantum States
- Authors: Xavier Gitiaux, Ian Morris, Maria Emelianenko, Mingzhen Tian
- Abstract summary: We develop an algorithm to generalize the quantum SWAP test for an arbitrary number $m$ of quantum states.
We construct a quantum circuit able to simultaneously measure overlaps of $m$ arbitrary pure states.
- Score: 4.989480853499916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a recursive algorithm to generalize the quantum SWAP test for an
arbitrary number $m$ of quantum states requiring $O(m)$ controlled-swap (CSWAP)
gates and $O(\log m)$ ancillary qubits. We construct a quantum circuit able to
simultaneously measure overlaps of $m$ arbitrary pure states. Our construction
relies on a pairing unitary that generates a superposition state where every
pair of input states is labelled by a basis state formed by the ancillaries.
Related papers
- Exploring quantum weight enumerators from the $n$-qubit parallelized SWAP test [19.183393329155567]
We build the connection between quantum weight enumerators and the $n$-qubit parallelized SWAP test.
We find that each shadow enumerator corresponds precisely to a probability in the $n$-qubit parallelized SWAP test.
For applications, we employ the $n$-qubit parallelized SWAP test to determine the distances of quantum error-correcting codes.
arXiv Detail & Related papers (2024-06-26T12:06:40Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - A generalized framework for quantum state discrimination, hybrid
algorithms, and the quantum change point problem [3.4683494246563606]
We present a hybrid quantum-classical algorithm based on semidefinite programming to calculate the maximum reward when the states are pure and have efficient circuits.
We give now-possible algorithms for the quantum change point identification problem which asks, given a sequence of quantum states, determine the time steps when the quantum states changed.
arXiv Detail & Related papers (2023-12-07T03:42:40Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Multi-state Swap Test Algorithm [2.709321785404766]
Estimating the overlap between two states is an important task with several applications in quantum information.
We design a quantum circuit to measure overlaps of multiple quantum states.
arXiv Detail & Related papers (2022-05-15T03:31:57Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - K-sparse Pure State Tomography with Phase Estimation [1.2183405753834557]
Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits.
QST reconstruction for any pure state composed of the superposition of $K$ different computational basis states of $n$bits in a specific measurement set-up is presented.
arXiv Detail & Related papers (2021-11-08T09:43:12Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Implementations of more general solid-state (SWAP)$^{1/m}$ and
controlled-(swap)$^{1/m}$ gates [0.0]
Universal quantum gates are the core elements in quantum information processing.
We design two schemes to realize more general (SWAP)$1/m$ gates.
$m$ is easily controlled by adjusting two quarter-wave plates and one half-wave plate.
arXiv Detail & Related papers (2020-01-10T13:21:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.