Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver
- URL: http://arxiv.org/abs/2203.07749v1
- Date: Tue, 15 Mar 2022 09:46:45 GMT
- Title: Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver
- Authors: Xu-Fei Yin, Yuxuan Du, Yue-Yang Fei, Rui Zhang, Li-Zheng Liu, Yingqiu
Mao, Tongliang Liu, Min-Hsiu Hsieh, Li Li, Nai-Le Liu, Dacheng Tao, Yu-Ao
Chen, and Jian-Wei Pan
- Abstract summary: Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
- Score: 89.80359585967642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recognition of entanglement states is a notoriously difficult problem
when no prior information is available. Here, we propose an efficient quantum
adversarial bipartite entanglement detection scheme to address this issue. Our
proposal reformulates the bipartite entanglement detection as a two-player
zero-sum game completed by parameterized quantum circuits, where a two-outcome
measurement can be used to query a classical binary result about whether the
input state is bipartite entangled or not. In principle, for an $N$-qubit
quantum state, the runtime complexity of our proposal is $O(\text{poly}(N)T)$
with $T$ being the number of iterations. We experimentally implement our
protocol on a linear optical network and exhibit its effectiveness to
accomplish the bipartite entanglement detection for 5-qubit quantum pure states
and 2-qubit quantum mixed states. Our work paves the way for using near-term
quantum machines to tackle entanglement detection on multipartite entangled
quantum systems.
Related papers
- A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Multipartite High-dimensional Quantum State Engineering via Discrete
Time Quantum Walk [8.875659216970327]
We give two schemes for the engineering task of arbitrary quantum state in $c$-partite $d$-dimensional system.
A concrete example of preparing generalized Bell states is given to demonstrate the first scheme we proposed.
We also show how these schemes can be used to reduce the cost of long-distance quantum communication.
arXiv Detail & Related papers (2022-12-23T06:06:16Z) - Multi-state Swap Test Algorithm [2.709321785404766]
Estimating the overlap between two states is an important task with several applications in quantum information.
We design a quantum circuit to measure overlaps of multiple quantum states.
arXiv Detail & Related papers (2022-05-15T03:31:57Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Entangled state generation via quantum walks with multiple coins [2.471925498075058]
Entanglement swapping provides an efficient method to generate entanglement in quantum communication protocols.
We propose a novel scheme to generate entangled state including two-qubit entangled state, two-qudit entangled state, three-qubit GHZ state and three-qudit GHZ state between several designate parties via the model of quantum walks with multiple coins.
arXiv Detail & Related papers (2020-11-03T11:39:40Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Computational advantage from quantum superposition of multiple temporal
orders of photonic gates [0.0]
A control quantum system can coherently determine the order in which a target quantum system undergoes $N$ gate operations.
We experimentally demonstrate the quantum $N$-switch with $N=4$ gates acting on a photonic-polarization qubit.
This is the first observation of a quantum superposition of more than $N=2$ temporal orders.
arXiv Detail & Related papers (2020-02-18T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.