EnTRPO: Trust Region Policy Optimization Method with Entropy
Regularization
- URL: http://arxiv.org/abs/2110.13373v1
- Date: Tue, 26 Oct 2021 03:04:00 GMT
- Title: EnTRPO: Trust Region Policy Optimization Method with Entropy
Regularization
- Authors: Sahar Roostaie, Mohammad Mehdi Ebadzadeh
- Abstract summary: Trust Region Policy Optimization (TRPO) is a popular and empirically successful policy search algorithm in reinforcement learning.
In this work, we use a replay buffer to borrow from the off-policy learning setting to TRPO.
We add an Entropy regularization term to advantage over pi, accumulated over time steps, in TRPO.
- Score: 1.599072005190786
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Trust Region Policy Optimization (TRPO) is a popular and empirically
successful policy search algorithm in reinforcement learning (RL). It
iteratively solved the surrogate problem which restricts consecutive policies
to be close to each other. TRPO is an on-policy algorithm. On-policy methods
bring many benefits, like the ability to gauge each resulting policy. However,
they typically discard all the knowledge about the policies which existed
before. In this work, we use a replay buffer to borrow from the off-policy
learning setting to TRPO. Entropy regularization is usually used to improve
policy optimization in reinforcement learning. It is thought to aid exploration
and generalization by encouraging more random policy choices. We add an Entropy
regularization term to advantage over {\pi}, accumulated over time steps, in
TRPO. We call this update EnTRPO. Our experiments demonstrate EnTRPO achieves
better performance for controlling a Cart-Pole system compared with the
original TRPO
Related papers
- Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion [44.95386817008473]
We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data.
We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient.
We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task.
arXiv Detail & Related papers (2024-06-27T14:03:49Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
Policy gradient methods seek to produce monotonic improvement through bounded changes in policy outputs.
In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective.
We show that the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration.
arXiv Detail & Related papers (2023-11-10T03:02:49Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
This paper studies offline policy learning, which aims at utilizing observations collected a priori to learn an optimal individualized decision rule.
Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics must be lower bounded.
We propose Pessimistic Policy Learning (PPL), a new algorithm that optimize lower confidence bounds (LCBs) instead of point estimates.
arXiv Detail & Related papers (2022-12-19T22:43:08Z) - Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators [88.54210578912554]
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning.
In this paper, we propose our closed-form policy improvement operators.
We empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark.
arXiv Detail & Related papers (2022-11-29T06:29:26Z) - Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO [6.33198867705718]
Policy optimization is a fundamental principle for designing reinforcement learning algorithms.
Despite its superior empirical performance, PPO-clip has not been justified via theoretical proof up to date.
This is the first ever that can prove global convergence to an optimal policy for a variant of PPO-clip.
arXiv Detail & Related papers (2021-10-26T15:56:57Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - Efficient Deep Reinforcement Learning via Adaptive Policy Transfer [50.51637231309424]
Policy Transfer Framework (PTF) is proposed to accelerate Reinforcement Learning (RL)
Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it.
Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods.
arXiv Detail & Related papers (2020-02-19T07:30:57Z) - BRPO: Batch Residual Policy Optimization [79.53696635382592]
In batch reinforcement learning, one often constrains a learned policy to be close to the behavior (data-generating) policy.
We propose residual policies, where the allowable deviation of the learned policy is state-action-dependent.
We derive a new for RL method, BRPO, which learns both the policy and allowable deviation that jointly maximize a lower bound on policy performance.
arXiv Detail & Related papers (2020-02-08T01:59:33Z) - Population-Guided Parallel Policy Search for Reinforcement Learning [17.360163137926]
A new population-guided parallel learning scheme is proposed to enhance the performance of off-policy reinforcement learning (RL)
In the proposed scheme, multiple identical learners with their own value-functions and policies share a common experience replay buffer, and search a good policy in collaboration with the guidance of the best policy information.
arXiv Detail & Related papers (2020-01-09T10:13:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.