Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO
- URL: http://arxiv.org/abs/2110.13799v1
- Date: Tue, 26 Oct 2021 15:56:57 GMT
- Title: Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO
- Authors: Hsuan-Yu Yao, Ping-Chun Hsieh, Kuo-Hao Ho, Kai-Chun Hu, Liang-Chun
Ouyang, I-Chen Wu
- Abstract summary: Policy optimization is a fundamental principle for designing reinforcement learning algorithms.
Despite its superior empirical performance, PPO-clip has not been justified via theoretical proof up to date.
This is the first ever that can prove global convergence to an optimal policy for a variant of PPO-clip.
- Score: 6.33198867705718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy optimization is a fundamental principle for designing reinforcement
learning algorithms, and one example is the proximal policy optimization
algorithm with a clipped surrogate objective (PPO-clip), which has been
popularly used in deep reinforcement learning due to its simplicity and
effectiveness. Despite its superior empirical performance, PPO-clip has not
been justified via theoretical proof up to date. This paper proposes to rethink
policy optimization and reinterpret the theory of PPO-clip based on hinge
policy optimization (HPO), called to improve policy by hinge loss in this
paper. Specifically, we first identify sufficient conditions of state-wise
policy improvement and then rethink policy update as solving a large-margin
classification problem with hinge loss. By leveraging various types of
classifiers, the proposed design opens up a whole new family of policy-based
algorithms, including the PPO-clip as a special case. Based on this construct,
we prove that these algorithms asymptotically attain a globally optimal policy.
To our knowledge, this is the first ever that can prove global convergence to
an optimal policy for a variant of PPO-clip. We corroborate the performance of
a variety of HPO algorithms through experiments and an ablation study.
Related papers
- Beyond Expected Returns: A Policy Gradient Algorithm for Cumulative Prospect Theoretic Reinforcement Learning [0.46040036610482665]
Cumulative Prospect Theory (CPT) has been developed to provide a better model for human-based decision-making supported by empirical evidence.
A few years ago, CPT has been combined with Reinforcement Learning (RL) to formulate a CPT policy optimization problem.
We show that our policy gradient algorithm scales better to larger state spaces compared to the existing zeroth order algorithm for solving the same problem.
arXiv Detail & Related papers (2024-10-03T15:45:39Z) - Reflective Policy Optimization [20.228281670899204]
Reflective Policy Optimization (RPO) amalgamates past and future state-action information for policy optimization.
RPO empowers the agent for introspection, allowing modifications to its actions within the current state.
Empirical results demonstrate RPO's feasibility and efficacy in two reinforcement learning benchmarks.
arXiv Detail & Related papers (2024-06-06T01:46:49Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
Policy gradient methods seek to produce monotonic improvement through bounded changes in policy outputs.
In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective.
We show that the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration.
arXiv Detail & Related papers (2023-11-10T03:02:49Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Proximal Policy Optimization Smoothed Algorithm [0.0]
We present a PPO variant, named Proximal Policy Optimization Smooth Algorithm (PPOS)
Its critical improvement is the use of a functional clipping method instead of a flat clipping method.
We show that it outperforms the latest PPO variants on both performance and stability in challenging continuous control tasks.
arXiv Detail & Related papers (2020-12-04T07:43:50Z) - Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO [90.90009491366273]
We study the roots of algorithmic progress in deep policy gradient algorithms through a case study on two popular algorithms.
Specifically, we investigate the consequences of "code-level optimizations:"
Our results show that they (a) are responsible for most of PPO's gain in cumulative reward over TRPO, and (b) fundamentally change how RL methods function.
arXiv Detail & Related papers (2020-05-25T16:24:59Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.