論文の概要: Periodic Activation Functions Induce Stationarity
- arxiv url: http://arxiv.org/abs/2110.13572v1
- Date: Tue, 26 Oct 2021 11:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 14:24:54.031221
- Title: Periodic Activation Functions Induce Stationarity
- Title(参考訳): 周期的活性化関数は定常性を引き起こす
- Authors: Lassi Meronen, Martin Trapp, Arno Solin
- Abstract要約: 本研究では,ベイズニューラルネットワークにおける周期的活性化関数が,ネットワーク重みと翻訳不変な定常ガウス過程とを関連づけていることを示す。
一連の実験において、周期的アクティベーション関数はドメイン内のデータに匹敵する性能を示し、ドメイン外検出のための深層ニューラルネットワークにおける摂動入力に対する感度を捉える。
- 参考スコア(独自算出の注目度): 19.689175123261613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network models are known to reinforce hidden data biases, making them
unreliable and difficult to interpret. We seek to build models that `know what
they do not know' by introducing inductive biases in the function space. We
show that periodic activation functions in Bayesian neural networks establish a
connection between the prior on the network weights and translation-invariant,
stationary Gaussian process priors. Furthermore, we show that this link goes
beyond sinusoidal (Fourier) activations by also covering triangular wave and
periodic ReLU activation functions. In a series of experiments, we show that
periodic activation functions obtain comparable performance for in-domain data
and capture sensitivity to perturbed inputs in deep neural networks for
out-of-domain detection.
- Abstract(参考訳): ニューラルネットワークモデルは、隠されたデータのバイアスを強化することで知られ、信頼性が低く、解釈が難しい。
関数空間に帰納バイアスを導入することによって、'彼らが知らないことを知る'モデルを構築したいのです。
ベイジアンニューラルネットワークにおける周期的活性化関数は、ネットワーク重みの事前と翻訳不変な定常ガウス過程の事前の接続を確立する。
さらに、このリンクは三角波と周期的ReLU活性化関数をカバーし、正弦波(フーリエ)の活性化を超えることを示す。
一連の実験において、周期的アクティベーション関数はドメイン内のデータに匹敵する性能を示し、ドメイン外検出のための深層ニューラルネットワークにおける摂動入力に対する感度を捉える。
関連論文リスト
- ENN: A Neural Network with DCT Adaptive Activation Functions [2.2713084727838115]
離散コサイン変換(DCT)を用いて非線形活性化関数をモデル化する新しいモデルであるExpressive Neural Network(ENN)を提案する。
このパラメータ化は、トレーニング可能なパラメータの数を低く保ち、勾配ベースのスキームに適合し、異なる学習タスクに適応する。
ENNのパフォーマンスは、いくつかのシナリオにおいて40%以上の精度のギャップを提供する、アートベンチマークの状態を上回ります。
論文 参考訳(メタデータ) (2023-07-02T21:46:30Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - On the Activation Function Dependence of the Spectral Bias of Neural
Networks [0.0]
ニューラルネットワークのスペクトルバイアスの観点から,この現象を考察する。
本稿では,ReLUニューラルネットワークのスペクトルバイアスを有限要素法との接続を利用して理論的に説明する。
我々は,Hatアクティベーション機能を持つニューラルネットワークが勾配降下とADAMを用いて大幅に高速にトレーニングされていることを示す。
論文 参考訳(メタデータ) (2022-08-09T17:40:57Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Sigmoid、ReLU、Tanhなどの非線形活性化関数は、ニューラルネットワーク(NN)において大きな成功を収めた。
サンプルの複雑な非線形特性のため、これらの活性化関数の目的は、元の特徴空間から線形分離可能な特徴空間へサンプルを投影することである。
この現象は、現在の典型的なNNにおいて、すべての特徴がすべての非線形関数によって変換される必要があるかどうかを探求することに興味をそそる。
論文 参考訳(メタデータ) (2022-03-22T13:09:17Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions [0.0]
この研究は、フィードフォワードニューラルネットワーク(FNN)学習の新しいデータ駆動手法(D-DM)の開発に寄与する。
論文 参考訳(メタデータ) (2021-07-04T18:20:27Z) - Activation function design for deep networks: linearity and effective
initialisation [10.108857371774977]
先行作業で特定された初期化時の2つの問題を回避する方法を検討する。
これらの問題は, 原点付近に十分に大きな線形領域を持つ活性化関数を選択することで, どちらも回避できることを示す。
論文 参考訳(メタデータ) (2021-05-17T11:30:46Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Neural Networks Fail to Learn Periodic Functions and How to Fix It [6.230751621285322]
本稿では,ReLU, tanh, sigmoidなどの標準活性化関数が単純な周期関数の外挿を学ばないことを示す。
我々は、周期関数を学ぶために所望の周期的帰納バイアスを達成する新しいアクティベーションである$x + sin2(x)$を提案する。
実験により,提案手法を温度・財務データ予測に適用した。
論文 参考訳(メタデータ) (2020-06-15T07:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。