論文の概要: Learning Robust Controllers Via Probabilistic Model-Based Policy Search
- arxiv url: http://arxiv.org/abs/2110.13576v1
- Date: Tue, 26 Oct 2021 11:17:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 22:23:47.755546
- Title: Learning Robust Controllers Via Probabilistic Model-Based Policy Search
- Title(参考訳): 確率モデルに基づくポリシー探索によるロバスト制御の学習
- Authors: Valentin Charvet, Bj{\o}rn Sand Jensen, Roderick Murray-Smith
- Abstract要約: このような方法で学習したコントローラが、環境の小さな摂動の下で頑健であり、一般化できるかどうかを考察する。
ガウス過程のダイナミックスモデルにおける確率雑音に対する低拘束がポリシー更新を規則化し、より堅牢なコントローラが得られることを示す。
- 参考スコア(独自算出の注目度): 2.886634516775814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model-based Reinforcement Learning estimates the true environment through a
world model in order to approximate the optimal policy. This family of
algorithms usually benefits from better sample efficiency than their model-free
counterparts. We investigate whether controllers learned in such a way are
robust and able to generalize under small perturbations of the environment. Our
work is inspired by the PILCO algorithm, a method for probabilistic policy
search. We show that enforcing a lower bound to the likelihood noise in the
Gaussian Process dynamics model regularizes the policy updates and yields more
robust controllers. We demonstrate the empirical benefits of our method in a
simulation benchmark.
- Abstract(参考訳): モデルに基づく強化学習は、最適なポリシーを近似するために、世界モデルを通して真の環境を推定する。
このアルゴリズムの族は通常、モデルなしのアルゴリズムよりもサンプル効率が良い。
このような方法で学習したコントローラが、環境の小さな摂動の下で頑健で一般化できるかどうかを検討する。
我々の研究は、確率的ポリシー探索の手法であるPILCOアルゴリズムにインスパイアされている。
ガウス過程のダイナミックスモデルにおける確率雑音に対する低拘束がポリシー更新を規則化し、より堅牢なコントローラが得られることを示す。
シミュレーションベンチマークにおいて,本手法の利点を実証した。
関連論文リスト
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
最適合成アルゴリズムは、証明された状態の数を4倍以上に増やすことができることを示す。
このアルゴリズムは、平均的な到達回避確率を3倍以上に向上させることができる。
論文 参考訳(メタデータ) (2023-10-03T10:52:21Z) - Enabling Efficient, Reliable Real-World Reinforcement Learning with
Approximate Physics-Based Models [10.472792899267365]
我々は,実世界のデータを用いたロボット学習のための,効率的かつ信頼性の高いポリシー最適化戦略の開発に重点を置いている。
本稿では,新しい政策勾配に基づく政策最適化フレームワークを提案する。
提案手法では,実世界のデータの数分で,正確な制御戦略を確実に学習できることが示されている。
論文 参考訳(メタデータ) (2023-07-16T22:36:36Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
オンライン方式で環境の遷移動態を学習する,オンライン型モデルに基づくセーフディープRLアルゴリズムを提案する。
我々は,本アルゴリズムがより標本効率が高く,制約付きモデルフリーアプローチと比較して累積的ハザード違反が低いことを示す。
論文 参考訳(メタデータ) (2022-10-14T06:53:02Z) - Bayesian regularization of empirical MDPs [11.3458118258705]
ベイズ的な視点を採り、マルコフ決定プロセスの目的関数を事前情報で正規化する。
提案するアルゴリズムは,大規模オンラインショッピングストアの合成シミュレーションと実世界の検索ログに基づいて評価する。
論文 参考訳(メタデータ) (2022-08-03T22:02:50Z) - Model Generation with Provable Coverability for Offline Reinforcement
Learning [14.333861814143718]
動的対応ポリシーによるオフライン最適化は、ポリシー学習とアウト・オブ・ディストリビューションの一般化の新しい視点を提供する。
しかし、オフライン環境での制限のため、学習したモデルは実際のダイナミクスを十分に模倣することができず、信頼性の高いアウト・オブ・ディストリビューション探索をサポートできなかった。
本研究では,実力学のカバレッジを最適化するモデルを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-01T08:34:09Z) - PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided
Exploration [15.173628100049129]
本研究では,カーネル化レギュレータ(KNR)と線形マルコフ決定過程(MDP)のモデルベースアルゴリズムについて検討する。
両方のモデルに対して、我々のアルゴリズムはサンプルの複雑さを保証し、プランニングオラクルへのアクセスのみを使用する。
また,提案手法は報酬のない探索を効率的に行うことができる。
論文 参考訳(メタデータ) (2021-07-15T15:49:30Z) - Efficient Model-Based Reinforcement Learning through Optimistic Policy
Search and Planning [93.1435980666675]
最先端の強化学習アルゴリズムと楽観的な探索を容易に組み合わせることができることを示す。
我々の実験は、楽観的な探索が行動に罰則がある場合、学習を著しくスピードアップすることを示した。
論文 参考訳(メタデータ) (2020-06-15T18:37:38Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。