Gradient representations in ReLU networks as similarity functions
- URL: http://arxiv.org/abs/2110.13581v1
- Date: Tue, 26 Oct 2021 11:29:10 GMT
- Title: Gradient representations in ReLU networks as similarity functions
- Authors: D\'aniel R\'acz, B\'alint Dar\'oczy
- Abstract summary: We investigate how the tangent space of the network can be exploited to refine the decision in case of ReLU (Rectified Linear Unit) activations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feed-forward networks can be interpreted as mappings with linear decision
surfaces at the level of the last layer. We investigate how the tangent space
of the network can be exploited to refine the decision in case of ReLU
(Rectified Linear Unit) activations. We show that a simple Riemannian metric
parametrized on the parameters of the network forms a similarity function at
least as good as the original network and we suggest a sparse metric to
increase the similarity gap.
Related papers
- The Geometric Structure of Fully-Connected ReLU Layers [0.0]
We formalize and interpret the geometric structure of $d$-dimensional fully connected ReLU layers in neural networks.
We provide results on the geometric complexity of the decision boundary generated by such networks, as well as proving that modulo an affine transformation, such a network can only generate $d$ different decision boundaries.
arXiv Detail & Related papers (2023-10-05T11:54:07Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
This manuscript explores how properties of functions learned by neural networks of depth greater than two layers affect predictions.
Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs.
arXiv Detail & Related papers (2023-05-24T22:10:12Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Entangled Residual Mappings [59.02488598557491]
We introduce entangled residual mappings to generalize the structure of the residual connections.
An entangled residual mapping replaces the identity skip connections with specialized entangled mappings.
We show that while entangled mappings can preserve the iterative refinement of features across various deep models, they influence the representation learning process in convolutional networks.
arXiv Detail & Related papers (2022-06-02T19:36:03Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - The Role of Linear Layers in Nonlinear Interpolating Networks [13.25706838589123]
Our framework considers a family of networks of varying depth that all have the same capacity but different implicitly defined representation costs.
The representation cost of a function induced by a neural network architecture is the minimum sum of squared weights needed for the network to represent the function.
Our results show that adding linear layers to a ReLU network yields a representation cost that reflects a complex interplay between the alignment and sparsity of ReLU units.
arXiv Detail & Related papers (2022-02-02T02:33:24Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - Clustering-Based Interpretation of Deep ReLU Network [17.234442722611803]
We recognize that the non-linear behavior of the ReLU function gives rise to a natural clustering.
We propose a method to increase the level of interpretability of a fully connected feedforward ReLU neural network.
arXiv Detail & Related papers (2021-10-13T09:24:11Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.