Real-time Human Response Prediction Using a Non-intrusive Data-driven
Model Reduction Scheme
- URL: http://arxiv.org/abs/2110.13583v1
- Date: Tue, 26 Oct 2021 11:33:11 GMT
- Title: Real-time Human Response Prediction Using a Non-intrusive Data-driven
Model Reduction Scheme
- Authors: Jonas Kneifl, Julian Hay, J\"org Fehr
- Abstract summary: This paper introduces a novel two-step MOR scheme to tackle this issue.
It is concluded that the presented method is well suited to approximate parameterized ODEs and can handle time-dependent parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent research in non-intrusive data-driven model order reduction (MOR)
enabled accurate and efficient approximation of parameterized ordinary
differential equations (ODEs). However, previous studies have focused on
constant parameters, whereas time-dependent parameters have been neglected. The
purpose of this paper is to introduce a novel two-step MOR scheme to tackle
this issue. In a first step, classic MOR approaches are applied to calculate a
low-dimensional representation of high-dimensional ODE solutions, i.e. to
extract the most important features of simulation data. Based on this
representation, a long short-term memory (LSTM) is trained to predict the
reduced dynamics iteratively in a second step. This enables the parameters to
be taken into account during the respective time step. The potential of this
approach is demonstrated on an occupant model within a car driving scenario.
The reduced model's response to time-varying accelerations matches the
reference data with high accuracy for a limited amount of time. Furthermore,
real-time capability is achieved. Accordingly, it is concluded that the
presented method is well suited to approximate parameterized ODEs and can
handle time-dependent parameters in contrast to common methods.
Related papers
- Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Should We Learn Most Likely Functions or Parameters? [51.133793272222874]
We investigate the benefits and drawbacks of directly estimating the most likely function implied by the model and the data.
We find that function-space MAP estimation can lead to flatter minima, better generalization, and improved to overfitting.
arXiv Detail & Related papers (2023-11-27T16:39:55Z) - Neural Dynamical Operator: Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods [0.0]
We present a data-driven modeling framework called neural dynamical operator that is continuous in both space and time.
A key feature of the neural dynamical operator is the resolution-invariance with respect to both spatial and temporal discretizations.
We show that the proposed model can better predict long-term statistics via the hybrid optimization scheme.
arXiv Detail & Related papers (2023-11-20T14:31:18Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Neural parameter calibration for large-scale multi-agent models [0.7734726150561089]
We present a method to retrieve accurate probability densities for parameters using neural equations.
The two combined create a powerful tool that can quickly estimate densities on model parameters, even for very large systems.
arXiv Detail & Related papers (2022-09-27T17:36:26Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
This paper proposes a novel sparse infinite-order VAR model for high-dimensional time series.
The temporal and cross-sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately.
Greater statistical efficiency and interpretability can be achieved with little loss of temporal information.
arXiv Detail & Related papers (2022-09-02T17:14:24Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.