Neural Dynamical Operator: Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods
- URL: http://arxiv.org/abs/2311.11798v4
- Date: Thu, 26 Sep 2024 21:25:48 GMT
- Title: Neural Dynamical Operator: Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods
- Authors: Chuanqi Chen, Jin-Long Wu,
- Abstract summary: We present a data-driven modeling framework called neural dynamical operator that is continuous in both space and time.
A key feature of the neural dynamical operator is the resolution-invariance with respect to both spatial and temporal discretizations.
We show that the proposed model can better predict long-term statistics via the hybrid optimization scheme.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven modeling techniques have been explored in the spatial-temporal modeling of complex dynamical systems for many engineering applications. However, a systematic approach is still lacking to leverage the information from different types of data, e.g., with different spatial and temporal resolutions, and the combined use of short-term trajectories and long-term statistics. In this work, we build on the recent progress of neural operator and present a data-driven modeling framework called neural dynamical operator that is continuous in both space and time. A key feature of the neural dynamical operator is the resolution-invariance with respect to both spatial and temporal discretizations, without demanding abundant training data in different temporal resolutions. To improve the long-term performance of the calibrated model, we further propose a hybrid optimization scheme that leverages both gradient-based and derivative-free optimization methods and efficiently trains on both short-term time series and long-term statistics. We investigate the performance of the neural dynamical operator with three numerical examples, including the viscous Burgers' equation, the Navier-Stokes equations, and the Kuramoto-Sivashinsky equation. The results confirm the resolution-invariance of the proposed modeling framework and also demonstrate stable long-term simulations with only short-term time series data. In addition, we show that the proposed model can better predict long-term statistics via the hybrid optimization scheme with a combined use of short-term and long-term data.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
The proposed framework consists of two stages, offline and online.
The online stage leverages those LANDO models to generate new data at a desired time instant.
dimensionality reduction technique is applied to high-dimensional dynamical systems to reduce the computational cost of training.
arXiv Detail & Related papers (2024-09-25T11:13:50Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
We introduce a grid-independent model learning partial differential equations (PDEs) from noisy and partial observations on irregular grids.
We propose a space-time continuous latent neural PDE model with an efficient probabilistic framework and a novel design encoder for improved data efficiency and grid independence.
arXiv Detail & Related papers (2023-07-09T06:53:59Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
This work presents a partial differential equation (PDE) based framework which improves the dynamics modeling capability.
We propose a neural operator that can handle time continuously without requiring iterative operations or specific grids of temporal discretization.
Our framework opens up a new way for a continuous representation of neural networks that can be readily adopted for real-world applications.
arXiv Detail & Related papers (2023-02-02T03:47:52Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
We develop a hierarchy of deep neural network time-steppers to approximate the flow map of the dynamical system over a disparate range of time-scales.
The resulting model is purely data-driven and leverages features of the multiscale dynamics.
We benchmark our algorithm against state-of-the-art methods, such as LSTM, reservoir computing, and clockwork RNN.
arXiv Detail & Related papers (2020-08-22T07:16:53Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.