PARIS: Personalized Activity Recommendation for Improving Sleep Quality
- URL: http://arxiv.org/abs/2110.13745v2
- Date: Wed, 29 May 2024 00:06:24 GMT
- Title: PARIS: Personalized Activity Recommendation for Improving Sleep Quality
- Authors: Meghna Singh, Saksham Goel, Abhiraj Mohan, Jaideep Srivastava,
- Abstract summary: People with insufficient sleep are more likely to report physical and mental distress, activity limitation, anxiety, and pain.
We utilize the relationship between physical activity and sleep quality to find ways of assisting people improve their sleep using machine learning techniques.
- Score: 1.746071703430171
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The quality of sleep has a deep impact on people's physical and mental health. People with insufficient sleep are more likely to report physical and mental distress, activity limitation, anxiety, and pain. Moreover, in the past few years, there has been an explosion of applications and devices for activity monitoring and health tracking. Signals collected from these wearable devices can be used to study and improve sleep quality. In this paper, we utilize the relationship between physical activity and sleep quality to find ways of assisting people improve their sleep using machine learning techniques. People usually have several behavior modes that their bio-functions can be divided into. Performing time series clustering on activity data, we find cluster centers that would correlate to the most evident behavior modes for a specific subject. Activity recipes are then generated for good sleep quality for each behavior mode within each cluster. These activity recipes are supplied to an activity recommendation engine for suggesting a mix of relaxed to intense activities to subjects during their daily routines. The recommendations are further personalized based on the subjects' lifestyle constraints, i.e. their age, gender, body mass index (BMI), resting heart rate, etc, with the objective of the recommendation being the improvement of that night's quality of sleep. This would in turn serve a longer-term health objective, like lowering heart rate, improving the overall quality of sleep, etc.
Related papers
- Countrywide natural experiment reveals impact of built environment on physical activity [55.93314719065985]
More walkable built environments have the potential to increase activity across the population.
Increases in walkability are associated with significant increases in physical activity after relocation.
Moderate-to-vigorous physical activity (MVPA) is linked to an array of associated health benefits.
arXiv Detail & Related papers (2024-06-07T00:11:17Z) - Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis [1.9662978733004597]
This study aims to construct a machine learning-based sleep assessment model providing evidence-based assessments, such as poor sleep due to frequent movement during sleep onset.
Extracting sleep sound events, deriving latent representations using VAE, clustering with GMM, and training LSTM for subjective sleep assessment achieved a high accuracy of 94.8% in distinguishing sleep satisfaction.
arXiv Detail & Related papers (2024-04-16T05:56:41Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - Using Ballistocardiography for Sleep Stage Classification [2.360019611990601]
Current methods of sleep stage detection are expensive, invasive to a person's sleep, and not practical in a modern home setting.
Ballistocardiography (BCG) is a non-invasive sensing technology that collects information by measuring the ballistic forces generated by the heart.
We propose to implement a sleep stage detection algorithm and compare it against sleep stages extracted from a Fitbit Sense Smart Watch.
arXiv Detail & Related papers (2022-02-02T14:02:48Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia.
Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions.
This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data.
arXiv Detail & Related papers (2021-10-19T11:45:01Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - A Review of the Non-Invasive Techniques for Monitoring Different Aspects of Sleep [19.49661647406365]
Studies are being conducted for sleep monitoring and have now become an important tool for understanding sleep behavior.
The gold standard method for sleep analysis is polysomnography (PSG) conducted in a clinical environment but this method is both expensive and complex for long-term use.
Various solutions have been proposed using both wearable and non-wearable methods which are cheap and easy to use for in-home sleep monitoring.
arXiv Detail & Related papers (2021-04-27T04:12:43Z) - N=1 Modelling of Lifestyle Impact on SleepPerformance [2.9073923339818006]
Sleep is critical to leading a healthy lifestyle.
Despite current research, creating personalized sleep models in real-world settings has been challenging.
This research proposes a sleep model that can identify causal relationships between daily activities and sleep quality.
arXiv Detail & Related papers (2020-06-18T22:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.