論文の概要: Revisiting Batch Normalization
- arxiv url: http://arxiv.org/abs/2110.13989v1
- Date: Tue, 26 Oct 2021 19:48:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 11:20:43.282456
- Title: Revisiting Batch Normalization
- Title(参考訳): バッチ正規化の再検討
- Authors: Jim Davis and Logan Frank
- Abstract要約: バッチ正規化(BN)は、ディープニューラルネットワークのトレーニングに不可欠である。
我々は、BNの定式化を再検討し、上記の問題に対処するために、BNの新しい方法と更新アプローチを提案する。
提案手法をBNに変更した実験結果は,様々なシナリオにおいて統計的に有意な性能向上を示した。
また、オンラインBNベースの入力データ正規化手法を提案し、他のオフラインや固定メソッドの必要性を軽減する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Batch normalization (BN) is comprised of a normalization component followed
by an affine transformation and has become essential for training deep neural
networks. Standard initialization of each BN in a network sets the affine
transformation scale and shift to 1 and 0, respectively. However, after
training we have observed that these parameters do not alter much from their
initialization. Furthermore, we have noticed that the normalization process can
still yield overly large values, which is undesirable for training. We revisit
the BN formulation and present a new initialization method and update approach
for BN to address the aforementioned issues. Experimental results using the
proposed alterations to BN show statistically significant performance gains in
a variety of scenarios. The approach can be used with existing implementations
at no additional computational cost. We also present a new online BN-based
input data normalization technique to alleviate the need for other offline or
fixed methods. Source code is available at
https://github.com/osu-cvl/revisiting-bn.
- Abstract(参考訳): バッチ正規化(bn)は正規化成分とアフィン変換で構成され、ディープニューラルネットワークのトレーニングに必須となっている。
ネットワークにおける各BNの標準初期化は、アフィン変換スケールをそれぞれ1と0にシフトさせる。
しかし、訓練後、これらのパラメータは初期化から大きく変化しないことがわかった。
さらに, 正規化過程は, トレーニングに好ましくない, 過大な値を与える可能性があることに注意した。
我々は、BNの定式化を再検討し、上記の問題に対処するため、BNの新たな初期化手法と更新アプローチを提案する。
提案するbnへの変更による実験結果は,様々なシナリオにおいて統計的に有意な性能向上を示した。
このアプローチは、追加の計算コストなしで既存の実装で使用できる。
また,オンラインbnベースの入力データ正規化手法を提案し,他のオフラインあるいは固定メソッドの必要性を緩和する。
ソースコードはhttps://github.com/osu-cvl/revisiting-bnで入手できる。
関連論文リスト
- Unified Batch Normalization: Identifying and Alleviating the Feature
Condensation in Batch Normalization and a Unified Framework [55.22949690864962]
バッチ正規化(BN)は、現代のニューラルネットワーク設計において欠かせない技術となっている。
UBN(Unified Batch Normalization)と呼ばれる2段階統合フレームワークを提案する。
UBNは異なる視覚バックボーンと異なる視覚タスクのパフォーマンスを大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-27T16:41:31Z) - An Adaptive Batch Normalization in Deep Learning [0.0]
バッチ正規化(BN)は、深層畳み込みニューラルネットワークのトレーニングを加速し、安定させる方法である。
本稿では、BNを必要とするデータとそれを必要としないデータを分離する、しきい値に基づく適応的なBNアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-03T12:12:56Z) - Rebalancing Batch Normalization for Exemplar-based Class-Incremental
Learning [23.621259845287824]
バッチ正規化(BN)は、様々なコンピュータビジョンタスクにおけるニューラルネットに対して広く研究されている。
我々はBNの新しい更新パッチを開発し、特にCIL(Exemplar-based class-incremental Learning)に特化している。
論文 参考訳(メタデータ) (2022-01-29T11:03:03Z) - Batch Normalization Preconditioning for Neural Network Training [7.709342743709842]
バッチ正規化(BN)は、ディープラーニングにおいて一般的でユビキタスな手法である。
BNは、非常に小さなミニバッチサイズやオンライン学習での使用には適していない。
BNP(Batch Normalization Preconditioning)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-02T18:17:26Z) - "BNN - BN = ?": Training Binary Neural Networks without Batch
Normalization [92.23297927690149]
バッチ正規化(BN)は、最先端のバイナリニューラルネットワーク(BNN)に不可欠な重要なファシリテータである
BNNのトレーニングに彼らのフレームワークを拡張し、BNNのトレーニングや推論体制からBNを除去できることを初めて実証します。
論文 参考訳(メタデータ) (2021-04-16T16:46:57Z) - MimicNorm: Weight Mean and Last BN Layer Mimic the Dynamic of Batch
Normalization [60.36100335878855]
ネットワークトレーニングにおける収束と効率を改善するために,MimicNormという新しい正規化手法を提案する。
我々は、神経核(NTK)理論を利用して、我々の重み付けが活性化を弱め、BN層のようなカオス状態にネットワークを移行することを証明する。
MimicNormは、ResNetsやShuffleNetのような軽量ネットワークなど、さまざまなネットワーク構造に対して同様の精度を実現し、約20%のメモリ消費を削減している。
論文 参考訳(メタデータ) (2020-10-19T07:42:41Z) - Double Forward Propagation for Memorized Batch Normalization [68.34268180871416]
バッチ正規化(BN)は、ディープニューラルネットワーク(DNN)の設計における標準コンポーネントである。
より正確でロバストな統計値を得るために,複数の最近のバッチを考慮に入れた記憶型バッチ正規化(MBN)を提案する。
関連する手法と比較して、提案したMBNはトレーニングと推論の両方において一貫した振る舞いを示す。
論文 参考訳(メタデータ) (2020-10-10T08:48:41Z) - PowerNorm: Rethinking Batch Normalization in Transformers [96.14956636022957]
自然言語処理(NLP)におけるニューラルネットワーク(NN)モデルの正規化法は層正規化(LN)である
LN は BN (naive/vanilla) の使用が NLP タスクの大幅な性能低下をもたらすという経験的観察により好まれる。
本稿では,この問題を解決する新しい正規化手法である電力正規化(PN)を提案する。
論文 参考訳(メタデータ) (2020-03-17T17:50:26Z) - Towards Stabilizing Batch Statistics in Backward Propagation of Batch
Normalization [126.6252371899064]
移動平均バッチ正規化(MABN)は,新しい正規化法である。
小バッチの場合,MABNはバニラBNの性能を完全に回復できることを示す。
実験では、ImageNetやCOCOを含む複数のコンピュータビジョンタスクにおけるMABNの有効性を実証した。
論文 参考訳(メタデータ) (2020-01-19T14:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。