Leveraging Local Temporal Information for Multimodal Scene
Classification
- URL: http://arxiv.org/abs/2110.13992v1
- Date: Tue, 26 Oct 2021 19:58:32 GMT
- Title: Leveraging Local Temporal Information for Multimodal Scene
Classification
- Authors: Saurabh Sahu, Palash Goyal
- Abstract summary: Video scene classification models should capture the spatial (pixel-wise) and temporal (frame-wise) characteristics of a video effectively.
Transformer models with self-attention which are designed to get contextualized representations for individual tokens given a sequence of tokens, are becoming increasingly popular in many computer vision tasks.
We propose a novel self-attention block that leverages both local and global temporal relationships between the video frames to obtain better contextualized representations for the individual frames.
- Score: 9.548744259567837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robust video scene classification models should capture the spatial
(pixel-wise) and temporal (frame-wise) characteristics of a video effectively.
Transformer models with self-attention which are designed to get contextualized
representations for individual tokens given a sequence of tokens, are becoming
increasingly popular in many computer vision tasks. However, the use of
Transformer based models for video understanding is still relatively
unexplored. Moreover, these models fail to exploit the strong temporal
relationships between the neighboring video frames to get potent frame-level
representations. In this paper, we propose a novel self-attention block that
leverages both local and global temporal relationships between the video frames
to obtain better contextualized representations for the individual frames. This
enables the model to understand the video at various granularities. We
illustrate the performance of our models on the large scale YoutTube-8M data
set on the task of video categorization and further analyze the results to
showcase improvement.
Related papers
- Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended? [22.191260650245443]
Video segmentation aims at partitioning video sequences into meaningful segments based on objects or regions of interest within frames.
Current video segmentation models are often derived from image segmentation techniques, which struggle to cope with small-scale or class-imbalanced video datasets.
We propose a training strategy Masked Video Consistency, which enhances spatial and temporal feature aggregation.
arXiv Detail & Related papers (2024-08-20T08:08:32Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Multi-entity Video Transformers for Fine-Grained Video Representation
Learning [36.31020249963468]
We re-examine the design of transformer architectures for video representation learning.
A salient aspect of our self-supervised method is the improved integration of spatial information in the temporal pipeline.
Our Multi-entity Video Transformer (MV-Former) architecture achieves state-of-the-art results on multiple fine-grained video benchmarks.
arXiv Detail & Related papers (2023-11-17T21:23:12Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
This paper proposes a novel text-guided video-to-video translation framework to adapt image models to videos.
Our framework achieves global style and local texture temporal consistency at a low cost.
arXiv Detail & Related papers (2023-06-13T17:52:23Z) - Multi-object Video Generation from Single Frame Layouts [84.55806837855846]
We propose a video generative framework capable of synthesizing global scenes with local objects.
Our framework is a non-trivial adaptation from image generation methods, and is new to this field.
Our model has been evaluated on two widely-used video recognition benchmarks.
arXiv Detail & Related papers (2023-05-06T09:07:01Z) - Time Is MattEr: Temporal Self-supervision for Video Transformers [72.42240984211283]
We design simple yet effective self-supervised tasks for video models to learn temporal dynamics better.
Our method learns the temporal order of video frames as extra self-supervision and enforces the randomly shuffled frames to have low-confidence outputs.
Under various video action recognition tasks, we demonstrate the effectiveness of our method and its compatibility with state-of-the-art Video Transformers.
arXiv Detail & Related papers (2022-07-19T04:44:08Z) - Revealing Single Frame Bias for Video-and-Language Learning [115.01000652123882]
We show that a single-frame trained model can achieve better performance than existing methods that use multiple frames for training.
This result reveals the existence of a strong "static appearance bias" in popular video-and-language datasets.
We propose two new retrieval tasks based on existing fine-grained action recognition datasets that encourage temporal modeling.
arXiv Detail & Related papers (2022-06-07T16:28:30Z) - Local Frequency Domain Transformer Networks for Video Prediction [24.126513851779936]
Video prediction is of interest not only in anticipating visual changes in the real world but has, above all, emerged as an unsupervised learning rule.
This paper proposes a fully differentiable building block that can perform all of those tasks separately while maintaining interpretability.
arXiv Detail & Related papers (2021-05-10T19:48:42Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.