Revealing Single Frame Bias for Video-and-Language Learning
- URL: http://arxiv.org/abs/2206.03428v1
- Date: Tue, 7 Jun 2022 16:28:30 GMT
- Title: Revealing Single Frame Bias for Video-and-Language Learning
- Authors: Jie Lei, Tamara L. Berg, Mohit Bansal
- Abstract summary: We show that a single-frame trained model can achieve better performance than existing methods that use multiple frames for training.
This result reveals the existence of a strong "static appearance bias" in popular video-and-language datasets.
We propose two new retrieval tasks based on existing fine-grained action recognition datasets that encourage temporal modeling.
- Score: 115.01000652123882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training an effective video-and-language model intuitively requires multiple
frames as model inputs. However, it is unclear whether using multiple frames is
beneficial to downstream tasks, and if yes, whether the performance gain is
worth the drastically-increased computation and memory costs resulting from
using more frames. In this work, we explore single-frame models for
video-and-language learning. On a diverse set of video-and-language tasks
(including text-to-video retrieval and video question answering), we show the
surprising result that, with large-scale pre-training and a proper frame
ensemble strategy at inference time, a single-frame trained model that does not
consider temporal information can achieve better performance than existing
methods that use multiple frames for training. This result reveals the
existence of a strong "static appearance bias" in popular video-and-language
datasets. Therefore, to allow for a more comprehensive evaluation of
video-and-language models, we propose two new retrieval tasks based on existing
fine-grained action recognition datasets that encourage temporal modeling. Our
code is available at https://github.com/jayleicn/singularity
Related papers
- Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data [19.210471935816273]
We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD) and a new Feint6K dataset.
To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning.
Our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models.
arXiv Detail & Related papers (2024-07-18T01:55:48Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Harvest Video Foundation Models via Efficient Post-Pretraining [67.30842563833185]
We propose an efficient framework to harvest video foundation models from image ones.
Our method is intuitively simple by randomly dropping input video patches and masking out input text during the post-pretraining procedure.
Our method achieves state-of-the-art performances, which are comparable to some heavily pretrained video foundation models.
arXiv Detail & Related papers (2023-10-30T14:06:16Z) - Grafting Pre-trained Models for Multimodal Headline Generation [12.063053852096514]
Multimodal headline utilizes both video frames and transcripts to generate the natural language title of the videos.
Previous researches on pre-trained language models and video-language models have achieved significant progress in related downstream tasks.
We propose a novel approach to graft the video encoder from the pre-trained video-language model on the generative pre-trained language model.
arXiv Detail & Related papers (2022-11-14T08:59:59Z) - Long-Form Video-Language Pre-Training with Multimodal Temporal
Contrastive Learning [39.80936685227549]
Large-scale video-language pre-training has shown significant improvement in video-language understanding tasks.
We introduce a Long-Form VIdeo-LAnguage pre-training model (VILA) and train it on a large-scale long-form video and paragraph dataset.
We fine-tune the model on seven downstream long-form video-language understanding tasks, achieve new state-of-the-art performances.
arXiv Detail & Related papers (2022-10-12T09:08:27Z) - Frozen CLIP Models are Efficient Video Learners [86.73871814176795]
Video recognition has been dominated by the end-to-end learning paradigm.
Recent advances in Contrastive Vision-Language Pre-training pave the way for a new route for visual recognition tasks.
We present Efficient Video Learning -- an efficient framework for directly training high-quality video recognition models.
arXiv Detail & Related papers (2022-08-06T17:38:25Z) - Align and Prompt: Video-and-Language Pre-training with Entity Prompts [111.23364631136339]
Video-and-language pre-training has shown promising improvements on various downstream tasks.
We propose Align and Prompt: an efficient and effective video-and-language pre-training framework with better cross-modal alignment.
Our code and pre-trained models will be released.
arXiv Detail & Related papers (2021-12-17T15:55:53Z) - Less is More: ClipBERT for Video-and-Language Learning via Sparse
Sampling [98.41300980759577]
A canonical approach to video-and-language learning dictates a neural model to learn from offline-extracted dense video features.
We propose a generic framework ClipBERT that enables affordable end-to-end learning for video-and-language tasks.
Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that ClipBERT outperforms existing methods.
arXiv Detail & Related papers (2021-02-11T18:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.