Differentially Private Federated Bayesian Optimization with Distributed
Exploration
- URL: http://arxiv.org/abs/2110.14153v1
- Date: Wed, 27 Oct 2021 04:11:06 GMT
- Title: Differentially Private Federated Bayesian Optimization with Distributed
Exploration
- Authors: Zhongxiang Dai, Bryan Kian Hsiang Low, Patrick Jaillet
- Abstract summary: We introduce differential privacy (DP) into the training of deep neural networks through a general framework for adding DP to iterative algorithms.
We show that DP-FTS-DE achieves high utility (competitive performance) with a strong privacy guarantee.
We also use real-world experiments to show that DP-FTS-DE induces a trade-off between privacy and utility.
- Score: 48.9049546219643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization (BO) has recently been extended to the federated
learning (FL) setting by the federated Thompson sampling (FTS) algorithm, which
has promising applications such as federated hyperparameter tuning. However,
FTS is not equipped with a rigorous privacy guarantee which is an important
consideration in FL. Recent works have incorporated differential privacy (DP)
into the training of deep neural networks through a general framework for
adding DP to iterative algorithms. Following this general DP framework, our
work here integrates DP into FTS to preserve user-level privacy. We also
leverage the ability of this general DP framework to handle different parameter
vectors, as well as the technique of local modeling for BO, to further improve
the utility of our algorithm through distributed exploration (DE). The
resulting differentially private FTS with DE (DP-FTS-DE) algorithm is endowed
with theoretical guarantees for both the privacy and utility and is amenable to
interesting theoretical insights about the privacy-utility trade-off. We also
use real-world experiments to show that DP-FTS-DE achieves high utility
(competitive performance) with a strong privacy guarantee (small privacy loss)
and induces a trade-off between privacy and utility.
Related papers
- CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
Federated learning (FL) is an efficient collaborative training paradigm with a focus on local privacy.
differential privacy (DP) is a classical approach to capture and ensure the reliability of private protections.
arXiv Detail & Related papers (2024-08-28T08:22:21Z) - Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence [22.946928984205588]
Differentially private federated learning (DP-FL) is a promising technique for collaborative model training.
We propose the first DP-FL framework (namely UDP-FL) which universally harmonizes any randomization mechanism.
We show that UDP-FL exhibits substantial resilience against different inference attacks.
arXiv Detail & Related papers (2024-07-20T00:11:59Z) - Private and Federated Stochastic Convex Optimization: Efficient Strategies for Centralized Systems [8.419845742978985]
This paper addresses the challenge of preserving privacy in Federated Learning (FL) within centralized systems.
We devise methods that ensure Differential Privacy (DP) while maintaining optimal convergence rates for homogeneous and heterogeneous data distributions.
arXiv Detail & Related papers (2024-07-17T08:19:58Z) - How Private are DP-SGD Implementations? [61.19794019914523]
We show that there can be a substantial gap between the privacy analysis when using the two types of batch sampling.
Our result shows that there can be a substantial gap between the privacy analysis when using the two types of batch sampling.
arXiv Detail & Related papers (2024-03-26T13:02:43Z) - Differentially Private Wireless Federated Learning Using Orthogonal
Sequences [56.52483669820023]
We propose a privacy-preserving uplink over-the-air computation (AirComp) method, termed FLORAS.
We prove that FLORAS offers both item-level and client-level differential privacy guarantees.
A new FL convergence bound is derived which, combined with the privacy guarantees, allows for a smooth tradeoff between the achieved convergence rate and differential privacy levels.
arXiv Detail & Related papers (2023-06-14T06:35:10Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Balancing Privacy and Performance for Private Federated Learning
Algorithms [4.681076651230371]
Federated learning (FL) is a distributed machine learning framework where multiple clients collaborate to train a model without exposing their private data.
FL algorithms frequently employ a differential privacy mechanism that introduces noise into each client's model updates before sharing.
We show that an optimal balance exists between the number of local steps and communication rounds, one that maximizes the convergence performance within a given privacy budget.
arXiv Detail & Related papers (2023-04-11T10:42:11Z) - Smoothed Differential Privacy [55.415581832037084]
Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-case analysis.
In this paper, we propose a natural extension of DP following the worst average-case idea behind the celebrated smoothed analysis.
We prove that any discrete mechanism with sampling procedures is more private than what DP predicts, while many continuous mechanisms with sampling procedures are still non-private under smoothed DP.
arXiv Detail & Related papers (2021-07-04T06:55:45Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other.
We propose a new FL framework with sparsification-amplified privacy.
Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee.
arXiv Detail & Related papers (2020-08-01T20:22:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.